Jump to content

2,4,5-Trimethoxyamphetamine

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
2,4,5-Trimethoxyamphetamine
Clinical data
Other namesTMA-2; 2,4,5-TMA; 2,4,5-Trimethoxy-α-methylphenethylamine; 2,5-Dimethoxy-4-methoxyamphetamine; 4-Methoxy-2,5-dimethoxyamphetamine; DOMeO; DOOMe; DOO
Routes of
administration
Oral[1][2]
Drug classSerotonergic psychedelic; Hallucinogen
Legal status
Legal status
Pharmacokinetic data
Duration of action8–12 hours[1][2]
Identifiers
  • 1-(2,4,5-trimethoxyphenyl)propan-2-amine
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
FormulaC12H19NO3
Molar mass225.288 g·mol−1
3D model (JSmol)
  • CC(CC1=CC(=C(C=C1OC)OC)OC)N
  • InChI=1S/C12H19NO3/c1-8(13)5-9-6-11(15-3)12(16-4)7-10(9)14-2/h6-8H,5,13H2,1-4H3
  • Key:TVSIMAWGATVNGK-UHFFFAOYSA-N

2,4,5-Trimethoxyamphetamine (2,4,5-TMA), also known as TMA-2 or as 2,5-dimethoxy-4-methoxyamphetamine (DOMeO), is a psychedelic drug of the phenethylamine and amphetamine families.[1][2] It is one of the trimethoxyamphetamine (TMA) series of positional isomers.[1][2] The drug is also notable in being the 4-methoxylated member of the DOx (i.e., 4-substituted-2,5-dimethoxyamphetamine) series of drugs.[1][2]

Use and effects

TMA-2 is a serotonergic psychedelic and produces hallucinogenic effects.[1][2] It is said to be active at doses of 20 to 40 mg and to have a duration of 8 to 12 hours.[1] It is much more potent than its positional isomer 3,4,5-trimethoxyamphetamine (3,4,5-TMA, TMA, or TMA-1), which is said to be active at doses of 100 to 250 mg and to have a duration of 6 to 8 hours.[4] However, DOM (2,5-dimethoxy-4-methylamphetamine), the analogue of TMA-2 in which its 4-methoxy group has been replaced with a more lipophilic 4-methyl group, is about 10 times more potent than TMA-2.[5]

Interactions

Pharmacology

TMA-2 activities
Target Affinity (Ki, nM)
5-HT1A >10,000
5-HT1B >10,000
5-HT1D >10,000
5-HT1E >10,000
5-HT1F ND
5-HT2A 57.9–1,300 (Ki)
190–1,860 (EC50Tooltip half-maximal effective concentration)
84–102% (EmaxTooltip maximal efficacy)
5-HT2B 154–307 (Ki)
270 (EC50)
78% (Emax)
5-HT2C 87.7–5,300
5-HT3 >10,000
5-HT4 ND
5-HT5A >10,000
5-HT6 >10,000
5-HT7 >10,000
α1A, α1B >10,000
α1D ND
α2Aα2C >10,000
β1, β2 >10,000
D1D5 >10,000
H1 1,407
H2H4 >10,000
M1, M3, M4 ND
M2, M5 >10,000
TAAR1 >4,400 (Ki) (mouse)
3,100 (Ki) (rat)
ND (EC50) (human)
I1 ND
σ1, σ2 ND
SERTTooltip Serotonin transporter >10,000 (Ki)
>100,000 (IC50Tooltip half-maximal inhibitory concentration)
>100,000 (EC50) (rat)
NETTooltip Norepinephrine transporter >10,000 (Ki)
>100,000 (IC50)
>100,000 (EC50) (rat)
DATTooltip Dopamine transporter >10,000 (Ki)
>100,000 (IC50)
>100,000 (EC50) (rat)
MAO-ATooltip Monoamine oxidase A >100,000 (IC50) (rat)
MAO-BTooltip Monoamine oxidase B >100,000 (IC50) (rat)
Notes: The smaller the value, the more avidly the drug binds to the site. All proteins are human unless otherwise specified. Refs: [6][7][8][9][10][11][12][13]

The drug's affinity (Ki) for the serotonin 5-HT2A receptor has been found to be 1,300 nM.[9] Its EC50Tooltip half-maximal effective concentration at the receptor was 190 nM and its EmaxTooltip maximal efficacy was 84%.[9] The drug was also active at the serotonin 5-HT2B receptor and, to a much lesser extent, at the serotonin 5-HT2C receptor.[9] TMA-2 is inactive at the monoamine transporters.[12][9] It was inactive at the mouse trace amine-associated receptor 1 (TAAR1), whereas it bound to the rat TAAR1 with an affinity (Ki) of 3,100 nM and was not assessed at the human TAAR1.[9]

As of 2011, TMA-2 is not an explicitly controlled substance in the United States.[2][3] However, it is a positional isomer of 3,4,5-trimethoxyamphetamine (TMA), and thus is a Schedule I controlled substance in states in which isomers are controlled substances.[2][3]

See also

References

  1. ^ a b c d e f g Shulgin AT, Shulgin A (1991). "#158 TMA-2 2,4,5-TRIMETHOXYAMPHETAMINE". PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 9780963009609. OCLC 25627628.
  2. ^ a b c d e f g h i Shulgin A, Manning T, Daley PF (2011). "#118. TMA-2". The Shulgin Index, Volume One: Psychedelic Phenethylamines and Related Compounds. Vol. 1. Berkeley: Transform Press. ISBN 978-0-9630096-3-0.
  3. ^ a b c https://www.deadiversion.usdoj.gov/schedules/orangebook/c_cs_alpha.pdf
  4. ^ Shulgin AT, Shulgin A (1991). "#157 TMA 3,4,5-TRIMETHOXYAMPHETAMINE". PiHKAL: A Chemical Love Story (1st ed.). Berkeley, CA: Transform Press. ISBN 9780963009609. OCLC 25627628.
  5. ^ Nichols, David E. (2012). "Structure–activity relationships of serotonin 5-HT2A agonists". Wiley Interdisciplinary Reviews: Membrane Transport and Signaling. 1 (5): 559–579. doi:10.1002/wmts.42. ISSN 2190-460X.
  6. ^ "Kᵢ Database". PDSP. 15 March 2025. Retrieved 15 March 2025.
  7. ^ Liu, Tiqing. "BDBM50005253 (+/-)1-Methyl-2-(2,4,5-trimethoxy-phenyl)-ethylamine::1-(2,4,5-trimethoxyphenyl)propan-2-amine::1-Methyl-2-(2,4,5-trimethoxy-phenyl)-ethylamine::1-Methyl-2-(2,4,5-trimethoxy-phenyl)-ethylamine(2,4,5-TMA)::CHEMBL8389". BindingDB. Retrieved 14 March 2025.
  8. ^ Ray TS (February 2010). "Psychedelics and the human receptorome". PLOS ONE. 5 (2): e9019. Bibcode:2010PLoSO...5.9019R. doi:10.1371/journal.pone.0009019. PMC 2814854. PMID 20126400.
  9. ^ a b c d e f Kolaczynska KE, Luethi D, Trachsel D, Hoener MC, Liechti ME (2019). "Receptor Interaction Profiles of 4-Alkoxy-Substituted 2,5-Dimethoxyphenethylamines and Related Amphetamines". Front Pharmacol. 10: 1423. doi:10.3389/fphar.2019.01423. PMC 6893898. PMID 31849671.
  10. ^ Nelson DL, Lucaites VL, Wainscott DB, Glennon RA (January 1999). "Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors". Naunyn Schmiedebergs Arch Pharmacol. 359 (1): 1–6. doi:10.1007/pl00005315. PMID 9933142.
  11. ^ Flanagan TW, Billac GB, Landry AN, Sebastian MN, Cormier SA, Nichols CD (April 2021). "Structure-Activity Relationship Analysis of Psychedelics in a Rat Model of Asthma Reveals the Anti-Inflammatory Pharmacophore". ACS Pharmacol Transl Sci. 4 (2): 488–502. doi:10.1021/acsptsci.0c00063. PMC 8033619. PMID 33860179.
  12. ^ a b Nagai F, Nonaka R, Satoh Hisashi Kamimura K (March 2007). "The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain". Eur J Pharmacol. 559 (2–3): 132–137. doi:10.1016/j.ejphar.2006.11.075. PMID 17223101.
  13. ^ Reyes-Parada M, Iturriaga-Vasquez P, Cassels BK (2019). "Amphetamine Derivatives as Monoamine Oxidase Inhibitors". Frontiers in Pharmacology. 10: 1590. doi:10.3389/fphar.2019.01590. PMC 6989591. PMID 32038257.