Jump to content

Bioinformatics workflow management system

From Wikipedia, the free encyclopedia

A bioinformatics workflow management system is a specialized form of workflow management system designed specifically to compose and execute a series of computational or data manipulation steps, or a workflow, that relate to bioinformatics.

There are currently many different workflow systems. Some have been developed more generally as scientific workflow systems for use by scientists from many different disciplines like astronomy and earth science. All such systems are based on an abstract representation of how a computation proceeds in the form of a directed graph, where each node represents a task to be executed and edges represent either data flow or execution dependencies between different tasks. Each system typically provides a visual front-end, allowing the user to build and modify complex applications with little or no programming expertise.[1][2][3]

Examples

[edit]

In alphabetical order, some examples of bioinformatics workflow management systems include:

Comparisons between workflow systems

[edit]

With a large number of bioinformatics workflow systems to choose from,[13] it becomes difficult to understand and compare the features of the different workflow systems. There has been little work conducted in evaluating and comparing the systems from a bioinformatician's perspective, especially when it comes to comparing the data types they can deal with, the in-built functionalities that are provided to the user or even their performance or usability. Examples of existing comparisons include:

  • The paper "Scientific workflow systems-can one size fit all?",[3] which provides a high-level framework for comparing workflow systems based on their control flow and data flow properties. The systems compared include Discovery Net, Taverna, Triana, Kepler as well as Yawl and BPEL.
  • The paper "Meta-workflows: pattern-based interoperability between Galaxy and Taverna"[14] which provides a more user-oriented comparison between Taverna and Galaxy in the context of enabling interoperability between both systems.
  • The infrastructure paper "Delivering ICT Infrastructure for Biomedical Research"[15] compares two workflow systems, Anduril and Chipster,[16] in terms of infrastructure requirements in a cloud-delivery model.
  • The paper "A review of bioinformatic pipeline frameworks"[17] attempts to classify workflow management systems based on three dimensions: "using an implicit or explicit syntax, using a configuration, convention or class-based design paradigm and offering a command line or workbench interface".

References

[edit]
  1. ^ Oinn, T.; Greenwood, M.; Addis, M.; Alpdemir, M. N.; Ferris, J.; Glover, K.; Goble, C.; Goderis, A.; Hull, D.; Marvin, D.; Li, P.; Lord, P.; Pocock, M. R.; Senger, M.; Stevens, R.; Wipat, A.; Wroe, C. (2006). "Taverna: Lessons in creating a workflow environment for the life sciences" (PDF). Concurrency and Computation: Practice and Experience. 18 (10): 1067–1100. doi:10.1002/cpe.993. S2CID 10219281.
  2. ^ Yu, J.; Buyya, R. (2005). "A taxonomy of scientific workflow systems for grid computing". ACM SIGMOD Record. 34 (3): 44. CiteSeerX 10.1.1.63.3176. doi:10.1145/1084805.1084814. S2CID 538714.
  3. ^ a b Curcin, V.; Ghanem, M. (2008). "Scientific workflow systems - can one size fit all?". 2008 Cairo International Biomedical Engineering Conference. pp. 1–9. doi:10.1109/CIBEC.2008.4786077. ISBN 978-1-4244-2694-2. S2CID 1885579.
  4. ^ "Anduril workflow website".
  5. ^ Ovaska, Kristian; Laakso, Marko; Haapa-Paananen, Saija; Louhimo, Riku; Chen, Ping; Aittomäki, Viljami; Valo, Erkka; Núñez-Fontarnau, Javier; Rantanen, Ville (2010-09-07). "Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme". Genome Medicine. 2 (9): 65. doi:10.1186/gm186. ISSN 1756-994X. PMC 3092116. PMID 20822536.
  6. ^ Elhai, J.; Taton, A.; Massar, J.; Myers, J. K.; Travers, M.; Casey, J.; Slupesky, M.; Shrager, J. (2009). "BioBIKE: A Web-based, programmable, integrated biological knowledge base". Nucleic Acids Research. 37 (Web Server issue): W28 – W32. doi:10.1093/nar/gkp354. PMC 2703918. PMID 19433511.
  7. ^ Brandt, Jörgen; Bux, Marc N.; Leser, Ulf (2015). "Cuneiform: A functional language for large scale scientific data analysis" (PDF). Proceedings of the Workshops of the EDBT/ICDT. 1330: 17–26.
  8. ^ Goecks, J.; Nekrutenko, A.; Taylor, J.; Galaxy Team, T. (2010). "Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences". Genome Biology. 11 (8): R86. doi:10.1186/gb-2010-11-8-r86. PMC 2945788. PMID 20738864.
  9. ^ Reich, Michael; et al. (2006). "GenePattern 2.0". Nature Genetics. 38 (1): 500–5001. doi:10.1038/ng0506-500. PMID 16642009. S2CID 5503897.
  10. ^ Tiwari, Abhishek; Sekhar, Arvind K.T. (2007). "Workflow based framework for life science informatics". Computational Biology and Chemistry. 31 (5–6): 305–319. doi:10.1016/j.compbiolchem.2007.08.009. PMID 17931570.
  11. ^ Okonechnikov, K; Golosova, O; Fursov, M; Ugene, Team (2012). "Unipro UGENE: A unified bioinformatics toolkit". Bioinformatics. 28 (8): 1166–7. doi:10.1093/bioinformatics/bts091. PMID 22368248.
  12. ^ Bavoil, L.; Callahan, S.P.; Crossno, P.J.; Freire, J.; Scheidegger, C.E.; Silva, C.T.; Vo, H.T. (2005). "VisTrails: Enabling Interactive Multiple-View Visualizations". VIS 05. IEEE Visualization, 2005. pp. 135–142. doi:10.1109/VISUAL.2005.1532788. ISBN 978-0-7803-9462-9.
  13. ^ "Existing Workflow systems". Common Workflow Language wiki. Archived from the original on 2019-10-17. Retrieved 2019-10-17.
  14. ^ Abouelhoda, M.; Alaa, S.; Ghanem, M. (2010). "Meta-workflows". Proceedings of the 1st International Workshop on Workflow Approaches to New Data-centric Science - Wands '10. p. 1. doi:10.1145/1833398.1833400. ISBN 9781450301886. S2CID 17343728.
  15. ^ Nyrönen, TH; Laitinen, J; et al. (2012), Delivering ICT infrastructure for biomedical research, Proceedings of the WICSA/ECSA 2012 Companion Volume (WICSA/ECSA '12), ACM, pp. 37–44, doi:10.1145/2361999.2362006, ISBN 9781450315685, S2CID 18199745
  16. ^ Kallio, M. A.; Tuimala, J. T.; Hupponen, T; Klemelä, P; Gentile, M; Scheinin, I; Koski, M; Käki, J; Korpelainen, E. I. (2011). "Chipster: User-friendly analysis software for microarray and other high-throughput data". BMC Genomics. 12: 507. doi:10.1186/1471-2164-12-507. PMC 3215701. PMID 21999641.
  17. ^ Leipzig J (2016). "A review of bioinformatic pipeline frameworks". Briefings in Bioinformatics. 18 (3): 530–536. doi:10.1093/bib/bbw020. PMC 5429012. PMID 27013646.