Jump to content

File:Exponential Collatz Fractal.jpg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (30,720 × 17,280 pixels, file size: 41.13 MB, MIME type: image/jpeg)

Summary

Warning The original file is very high-resolution. It might not load properly or could cause your browser to freeze when opened at full size. Open in ZoomViewer
Description
English: A Collatz fractal for the interpolating function . The center of the image is and the real part goes from to .
Date
Source Own work
Author Hugo Spinelli
Other versions
new file This image is a JPEG version of the original PNG image at File: Exponential Collatz Fractal.png.

Generally, this JPEG version should be used when displaying the file from Commons, in order to reduce the file size of thumbnail images. However, any edits to the image should be based on the original PNG version in order to prevent generation loss, and both versions should be updated. Do not make edits based on this version.  See here for more information.

Source code
InfoField
Python code
import enum
import time

import numba as nb
import numpy as np
import matplotlib
from PIL import Image, PyAccess


# Amount of times to print the total progress
PROGRESS_STEPS: int = 20

# Number of pixels (width*height) and aspect ratio (width/height)
RESOLUTION: int = 1920*1080
ASPECT_RATIO: float = 1920/1080

# Value of the center pixel
CENTER: complex = 0 + 0j  # For testing: -4.6875 + 2.63671875j

# Value range of the real part (width of the horizontal axis)
RE_RANGE: float = 10  # For testing: 10/16

# Show grid lines for integer real and imaginary parts
SHOW_GRID: bool = False
GRID_COLOR: tuple[int, int, int] = (125, 125, 125)

# Matplotlib named colormap
COLORMAP_NAME: str = 'inferno'

# Color of the interior of the fractal (convergent points)
INTERIOR_COLOR: tuple[int, int, int] = (0, 0, 60)
# Color for large divergence counts
ERROR_COLOR: tuple[int, int, int] = (0, 0, 60)


# Plot range of the axes
X_MIN = CENTER.real - RE_RANGE/2  # min Re(z)
X_MAX = CENTER.real + RE_RANGE/2  # max Re(z)
Y_MIN = CENTER.imag - RE_RANGE/(2*ASPECT_RATIO)  # min Im(z)
Y_MAX = CENTER.imag + RE_RANGE/(2*ASPECT_RATIO)  # max Im(z)

x_range = X_MAX - X_MIN
y_range = Y_MAX - Y_MIN
pixels_per_unit = np.sqrt(RESOLUTION/(x_range*y_range))

# Width and height of the image in pixels
WIDTH = round(pixels_per_unit*x_range)
HEIGHT = round(pixels_per_unit*y_range)


# Maximum iterations for the divergence test
MAX_ITER: int = 10**4  # recommended >= 10**3
# Minimum consecutive abs(r) decreases to declare linear divergence
MIN_R_DROPS: int = 4  # recommended >= 2
# Minimum iterations to start checking for slow drift (unknown divergence)
MIN_ITER_SLOW: int = 200  # recommended >= 100


# Max value of Re(z) and Im(z) such that the recursion doesn't overflow
CUTOFF_RE = 7.564545572282618e+153
CUTOFF_IM = 112.10398935569289


# Precompute the colormap
CMAP_LEN: int = 2000
cmap_mpl = matplotlib.colormaps[COLORMAP_NAME]
# Start away from 0 (discard black values for the 'inferno' colormap)
# Matplotlib's colormaps have 256 discrete color points
n_cmap = round(256*0.85)
CMAP = [cmap_mpl(k/256) for k in range(256 - n_cmap, 256)]
# Interpolate
x = np.linspace(0, 1, num=CMAP_LEN)
xp = np.linspace(0, 1, num=n_cmap)
c0, c1, c2 = tuple(np.interp(x, xp, [c[k] for c in CMAP]) for k in range(3))
CMAP = []
for x0, x1, x2 in zip(c0, c1, c2):
    CMAP.append(tuple(round(255*x) for x in (x0, x1, x2)))


class DivType(enum.Enum):
    """Divergence type."""

    MAX_ITER = 0  # Maximum iterations reached
    SLOW = 1  # Detected slow growth (maximum iterations will be reached)
    CYCLE = 2  # Cycled back to the same value after 8 iterations
    LINEAR = 3  # Detected linear divergence
    CUTOFF_RE = 4  # Diverged by exceeding the real part cutoff
    CUTOFF_IM = 5  # Diverged by exceeding the imaginary part cutoff


@nb.jit(nb.float64(nb.float64, nb.int64), nopython=True)
def smooth(x, k=1):
    """Recursive exponential smoothing function."""

    y = np.expm1(np.pi*x)/np.expm1(np.pi)
    if k <= 1:
        return y
    return smooth(y, np.fmin(6, k - 1))


@nb.jit(nb.float64(nb.float64), nopython=True)
def get_delta_im(x):
    """Get the fractional part of the smoothed divergence count for
    imaginary part blow-up."""

    nu = np.log(np.abs(x)/CUTOFF_IM)/(np.pi*CUTOFF_IM - np.log(CUTOFF_IM))
    nu = np.fmax(0, np.fmin(nu, 1))
    return smooth(1 - nu, 2)


@nb.jit(nb.float64(nb.float64, nb.float64), nopython=True)
def get_delta_re(x, e):
    """Get the fractional part of the smoothed divergence count for
    real part blow-up."""

    nu = np.log(np.abs(x)/CUTOFF_RE)/np.log1p(e)
    nu = np.fmax(0, np.fmin(nu, 1))
    return 1 - nu


@nb.jit(
    nb.types.containers.Tuple((
        nb.float64,
        nb.types.EnumMember(DivType, nb.int64)
    ))(nb.complex128),
    nopython=True
)
def divergence_count(z):
    """Return a smoothed divergence count and the type of divergence."""

    delta_im = -1
    delta_re = -1
    cycle = 0
    r0 = -1
    r_drops = 0  # Counter for number of consecutive times abs(r) decreases
    a, b = z.real, z.imag
    a_cycle, b_cycle = a, b
    cutoff_re_squared = CUTOFF_RE*CUTOFF_RE

    for k in range(MAX_ITER):

        e = 0.5*np.exp(-np.pi*b)

        cycle += 1
        if cycle == 8:
            cycle = 0
            r = e*np.hypot(0.5 + a, b)/(1e-6 + np.abs(b))

            if r < r0 < 0.5:
                r_drops += 1
            else:
                r_drops = 0
            # Stop early due to likely slow linear divergence
            if r_drops >= MIN_R_DROPS:
                delta = 0.25*(CUTOFF_RE - a)
                return k + delta, DivType.LINEAR

            # Detected slow growth (maximum iterations will be reached)
            if ((k >= MIN_ITER_SLOW) and (r0 <= r)
                    and (r + (r - r0)*(MAX_ITER - k) < 8*0.05)):
                delta = 0.25*(CUTOFF_RE - a)
                return k + delta, DivType.SLOW
            r0 = r

            # Cycled back to the same value after 8 iterations
            if (a - a_cycle)**2 + (b - b_cycle)**2 < 1e-16:
                return k, DivType.CYCLE
            a_cycle = a
            b_cycle = b

        a0 = a
        # b0 = b
        s = np.sin(np.pi*a)
        c = np.cos(np.pi*a)
        # Equivalent to:
        # z = 0.25 + z - (0.25 + 0.5*z)*np.exp(np.pi*z*1j)
        # where z = a + b*1j
        a += e*(b*s - (0.5 + a)*c) + 0.25
        b -= e*(b*c + (0.5 + a0)*s)

        if b < -CUTOFF_IM:
            delta_im = get_delta_im(-b)
        if a*a + b*b > cutoff_re_squared:
            delta_re = get_delta_re(np.hypot(a, b), e)
        # Diverged by exceeding a cutoff
        if delta_im >= 0 or delta_re >= 0:
            if delta_re < 0 or delta_im <= delta_re:
                return k + delta_im, DivType.CUTOFF_IM
            else:
                return k + delta_re, DivType.CUTOFF_RE

    # Maximum iterations reached
    return -1, DivType.MAX_ITER


@nb.jit(nb.complex128(nb.float64, nb.float64), nopython=True)
def pixel_to_z(a, b):
    re = X_MIN + (X_MAX - X_MIN)*a/WIDTH
    im = Y_MAX - (Y_MAX - Y_MIN)*b/HEIGHT
    return re + 1j*im


@nb.jit(nb.float64(nb.float64), nopython=True)
def cyclic_map(g):
    """A continuous function that cycles back and forth between 0 and 1."""

    # This can be any continuous function.
    # Log scale removes high-frequency color cycles.
    # freq_div = 1
    # g = np.log1p(np.fmax(0, g/freq_div)) - np.log1p(1/freq_div)

    # Beyond this value for float64, decimals are truncated
    if g >= 2**51:
        return -1

    # Normalize and cycle
    # g += 0.5  # phase from 0 to 1
    return 1 - np.abs(2*(g - np.floor(g)) - 1)


def get_pixel(px, py):
    z = pixel_to_z(px, py)
    dc, div_type = divergence_count(z)
    match div_type:
        case DivType.MAX_ITER

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

An exponential Collatz fractal with smooth coloring based on divergence speed.

Items portrayed in this file

depicts

6 October 2023

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:37, 6 October 2023Thumbnail for version as of 19:37, 6 October 202330,720 × 17,280 (41.13 MB)Hugo SpinelliUploaded own work with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file: