File:Nets for icosahedral aperiodic tile set.svg
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance

Size of this PNG preview of this SVG file: 800 × 465 pixels. Other resolutions: 320 × 186 pixels | 640 × 372 pixels | 1,024 × 595 pixels | 1,280 × 744 pixels | 2,560 × 1,488 pixels | 900 × 523 pixels.
Original file (SVG file, nominally 900 × 523 pixels, file size: 28 KB)
![]() | This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionNets for icosahedral aperiodic tile set.svg |
English: The rhombohedra created when folding these nets form an aperiodic set of tiles under the matching rule that red dots must line up with blue dots. This tile set is due to Alan Mackay and Robert Amman. Different nets of the same tiles are given as Figure 20 in [Lord, Eric A. (1991), “Quasicrystals and Penrose patterns”, in Current Science, volume 61, issue 5, pages 313].
The following asymptote code was used to generate the figure: viewportmargin=(2,2);
size(720);
real t = 2.*cos(pi/5.);
real ph = 31.71747441146101;
real f = 0.4; real r = 0.2;
pair a1 = (1.,0); pair a2 = (0,t);
pair ax1 = rotate(2*ph)*a1; pair ax2 = rotate(2*ph)*a2;
pair ay1 = rotate(180-2*ph)*a1; pair ay2 = rotate(180-2*ph)*a2;
pair b1 = (0,f*t); pair b2 = (0,2*t-f*t);
path rh = (0,0)--(1.,t)--(0,2.*t)--(-1.,t)--cycle;
path d1 = circle(b1,r); path d2 = circle(b2,r);
path p = rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(2*a2+2*ay2)*rotate(-4*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(2*a2)*rotate(180-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(a1+a2)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(a1+a2)*rotate(-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(a1+a2-2*ay2)*rotate(180-4*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path c = d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(2*a2+2*ay2)*rotate(-4*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(2*a2)*rotate(180-2*ph)*d2; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(a1+a2)*d2; draw(c,linewidth(1)); fill(c,brown);
path c = shift(a1+a2)*rotate(-2*ph)*d2; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(a1+a2-2*ay2)*rotate(180-4*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
pair s1 = 2.5*a2;
path p = shift(s1)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s1)*shift(2*a2+2*ay2)*rotate(-4*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s1)*shift(2*a2)*rotate(180-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s1)*shift(a1+a2)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s1)*shift(a1+a2)*rotate(-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s1)*shift(a1+a2-2*ay2)*rotate(180-4*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path c = shift(s1)*d2; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s1)*shift(2*a2+2*ay2)*rotate(-4*ph)*d2; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s1)*shift(2*a2)*rotate(180-2*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(s1)*shift(a1+a2)*d1; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s1)*shift(a1+a2)*rotate(-2*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(s1)*shift(a2+a1-2*ay2)*rotate(180-4*ph)*d2; draw(c,linewidth(1)); fill(c,lightblue);
pair s2 = 10.1*a1;
path p = shift(s2)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s2)*rotate(2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s2)*rotate(-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s2)*shift(ax1+3*ax2)*rotate(180)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s2)*shift(ax1+3*ax2)*rotate(180-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s2)*shift(ax1+3*ax2)*rotate(180+2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path c = shift(s2)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(s2)*rotate(2*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(s2)*rotate(-2*ph)*d1; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s2)*shift(ax1+3*ax2)*rotate(180)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(s2)*shift(ax1+3*ax2)*rotate(180-2*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(s2)*shift(ax1+3*ax2)*rotate(180+2*ph)*d1; draw(c,linewidth(1)); fill(c,lightblue);
pair s3 = 2.5*a2+10.1*a1;
path p = shift(s3)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s3)*rotate(2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s3)*rotate(-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s3)*shift(ax1+3*ax2)*rotate(180)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s3)*shift(ax1+3*ax2)*rotate(180-2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path p = shift(s3)*shift(ax1+3*ax2)*rotate(180+2*ph)*rh; draw(p,linewidth(1)); fill(p,yellow);
path c = shift(s3)*d1; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s3)*rotate(2*ph)*d1; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s3)*rotate(-2*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
path c = shift(s3)*shift(ax1+3*ax2)*rotate(180)*d1; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s3)*shift(ax1+3*ax2)*rotate(180-2*ph)*d1; draw(c,linewidth(1)); fill(c,lightblue);
path c = shift(s3)*shift(ax1+3*ax2)*rotate(180+2*ph)*d1; draw(c,linewidth(1)); fill(c,brown);
viewportsize=(720.0pt,0);
|
Date | |
Source | Own work |
Author | Eigenbra |
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:



This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
![]() |
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
You may select the license of your choice.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
depicts
10 August 2014
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 03:06, 11 August 2014 | ![]() | 900 × 523 (28 KB) | Eigenbra | {{Information |Description ={{en|1=The rhombohedra created when folding these nets form an aperiodic set of tiles under the matching rule that red dots must line up with blue dots. This tile set is due to Alan Mackay and Robert Amman. Different nets... |
File usage
The following page uses this file:
Global file usage
The following other wikis use this file:
- Usage on ru.wikipedia.org
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
Width | 720pt |
---|---|
Height | 418.349pt |