Jump to content

3C 432

From Wikipedia, the free encyclopedia
3C 432
The quasar 3C 432.
Observation data (J2000.0 epoch)
ConstellationPegasus
Right ascension21h 22m 46.319s[1]
Declination+17° 04′ 37.983″[1]
Redshift1.785000[1]
Heliocentric radial velocity535,130 km/s[1]
Distance9.678 Gly
Apparent magnitude (V)17.96
Apparent magnitude (B)18.18
Characteristics
TypeRL1[1]
Other designations
4C +16.72, PKS 2120+16, LEDA 2817730, OX +134.2, NRAO 0656, TXS 2120+168, IERS B2120+168[1]

3C 432 is a quasar located in the constellation of Pegasus. It has a redshift of (z) 1.785[1] and it was first discovered in 1966 during the Third Cambridge Catalogue of Radio Sources survey.[2] This is a powerful radio-loud object classified as a lobe-dominated quasar,[3] with a Type II Fanaroff Riley class source.[4][5]

Description

[edit]

The source of 3C 432 is small.[6] When observed with Very Large Array radio imaging, it is made up of bright radio lobes which are placed asymmetrically around its central feature, interpreted as the radio core.[6] There are two detected hot spots; one located on the lobe extreme edge and the other located towards the lobe inner edges.[4] A jet displaying an elongated jet knot, is found pointing towards the direction of the brightest hot spot region.[6] This jet is estimated to have an extension of 155 kiloparsecs.[7] On the western edge of its southeast lobe, there is a ring feature girding the jet's path with an absence of a counter-jet. Strong polarization has been found in the southeast lobe's west side, mainly between 30% to 50%, while the southeast hot spot and the jet shows no traces of polarization.[6] In both the core and lobes, radio emission are present.[8]

The host galaxy of 3C 432 is compact. Based on imaging by Hubble Space Telescope, it is found to have an orientation of 45° along its position angle with a diameter of 1.2 fractional arcseconds. There is also a detection of a secondary radio emission plume that has a position angle of 135°.[9] In additional, the host galaxy is experiencing a starburst with its total star formation rate being 420 Mʘ per year.[10] It is also undergoing a galaxy merger.[11]

Observations made using the AGN radio-to-X-ray spectral energy distribution model fitting code, found the torus emission of the accretion disk of 3C 432, has a best fit by combining clumps and a homogenous disk that is described having a high opacity, with a viewing inclination angle of 33°.[7] A central supermassive black hole mass of 9.72 Mʘ was also calculated for the quasar, with its broad-line luminosity estimating to be 45.57 LBLR.[11][12]

References

[edit]
  1. ^ a b c d e f g "NED search results for 3C 432". NASA/IPAC Extragalactic Database. Retrieved 2025-05-25.
  2. ^ Véron, P. (1966-06-01). "Optical Positions for Radio Sources in the 3c Revised Catalogue". The Astrophysical Journal. 144: 861. Bibcode:1966ApJ...144..861V. doi:10.1086/148682. ISSN 0004-637X.
  3. ^ Hough, D. H.; Vermeulen, R. C.; Readhead, A. C. S.; Cross, L. L.; Barth, E. L.; Yu, L. H.; Beyer, P. J.; Phifer, E. M. (2002-03-01). "Parsec-Scale Radio Structure and Broad Optical Emission Lines in a Complete Sample of 3CR Lobe-dominated Quasars". The Astronomical Journal. 123 (3): 1258–1287. Bibcode:2002AJ....123.1258H. doi:10.1086/338847. ISSN 0004-6256.
  4. ^ a b Fernini, Ilias (2007-05-17). "8.4 GHz High-Resolution Observations of Fanaroff-Riley II 3CR Radio Sources with 0.3 < z < 2.0. II. Ten New Images". The Astronomical Journal. 134 (1): 158–168. Bibcode:2007AJ....134..158F. doi:10.1086/518216. ISSN 0004-6256.
  5. ^ Vaddi, S; Kharb, P; Daly, R A; O’Dea, C P; Baum, S A; Deo, D K; Barbusca, T C; Murali, Chintak (2019-03-21). "A VLA–GMRT look at 11 powerful FR ii quasars". Monthly Notices of the Royal Astronomical Society. 484 (1): 385–408. doi:10.1093/mnras/sty3494. ISSN 0035-8711.
  6. ^ a b c d Bridle, Alan H.; Hough, David H.; Lonsdale, Colin J.; Burns, Jack O.; Laing, Robert A. (1994-09-01). "Deep VLA Imaging of Twelve Extended 3CR Quasars". The Astronomical Journal. 108: 766. Bibcode:1994AJ....108..766B. doi:10.1086/117112. ISSN 0004-6256.
  7. ^ a b Azadi, Mojegan; Wilkes, Belinda; Kuraszkiewicz, Joanna; McDowell, Jonathan; Siebenmorgen, Ralf; Ashby, Matthew; Birkinshaw, Mark; Worrall, Diana; Abrams, Natasha; Barthel, Peter; Fazio, Giovanni G.; Haas, Martin; Hyman, Sóley; Martínez-Galarza, Rafael; Meyer, Eileen T. (2023-03-01). "Disentangling the AGN and Star formation Contributions to the Radio–X-Ray Emission of Radio-loud Quasars at 1 < Z < 2". The Astrophysical Journal. 945 (2): 145. arXiv:2011.03130. Bibcode:2023ApJ...945..145A. doi:10.3847/1538-4357/acbe9c. ISSN 0004-637X.
  8. ^ Hilbert, B.; Chiaberge, M.; Kotyla, J. P.; Tremblay, G. R.; Stanghellini, C.; Sparks, W. B.; Baum, S.; Capetti, A.; Macchetto, F. D.; Miley, G. K.; O'Dea, C. P.; Perlman, E. S.; Quillen, A. (2016-07-01). "Powerful Activity in the Bright Ages. I. A Visible/IR Survey of High Redshift 3C Radio Galaxies and Quasars". The Astrophysical Journal Supplement Series. 225 (1): 12. arXiv:1605.03196. Bibcode:2016ApJS..225...12H. doi:10.3847/0067-0049/225/1/12. ISSN 0067-0049.
  9. ^ Lehnert, Matthew D.; Miley, George K.; Sparks, William B.; Baum, Stefi A.; Biretta, John; Golombek, Daniel; de Koff, Sigrid; Macchetto, Ferdinando D.; McCarthy, Patrick J. (1999-08-01). "HUBBLE SPACE TELESCOPE Snapshot Survey of 3CR Quasars: The Data". The Astrophysical Journal Supplement Series. 123 (2): 351–376. Bibcode:1999ApJS..123..351L. doi:10.1086/313239. ISSN 0067-0049.
  10. ^ Barthel, Peter; Podigachoski, Pece; Wilkes, Belinda; Haas, Martin (2017-06-01). "Starburst-driven Superwinds in Quasar Host Galaxies". The Astrophysical Journal Letters. 843 (1): L16. arXiv:1706.00194. Bibcode:2017ApJ...843L..16B. doi:10.3847/2041-8213/aa7631. ISSN 2041-8205.
  11. ^ a b Breiding, Peter; Chiaberge, Marco; Lambrides, Erini; Meyer, Eileen T.; Willner, S. P.; Hilbert, Bryan; Haas, Martin; Miley, George; Perlman, Eric S.; Barthel, Peter; O’Dea, Christopher P.; Capetti, Alessandro; Wilkes, Belinda; Baum, Stefi A.; Macchetto, Duccio F. (2024-03-01). "Powerful Radio-loud Quasars Are Triggered by Galaxy Mergers in the Cosmic Bright Ages". The Astrophysical Journal. 963 (2): 91. arXiv:2305.11804. Bibcode:2024ApJ...963...91B. doi:10.3847/1538-4357/ad19db. ISSN 0004-637X.
  12. ^ Li, Y.; Wang, D.-X.; Gan, Z.-M. (2008-04-01). "A simplified model of jet power from active galactic nuclei" (PDF). Astronomy & Astrophysics. 482 (1): 1–8. arXiv:0802.3504. Bibcode:2008A&A...482....1L. doi:10.1051/0004-6361:200809369. ISSN 0004-6361.
[edit]