Jump to content

4C +28.07

From Wikipedia, the free encyclopedia
4C +28.07
The blazar 4C +28.07.
Observation data (J2000.0 epoch)
ConstellationAries
Right ascension02h 37m 52.405s
Declination+28° 48′ 08.990″
Redshift1.213000
Heliocentric radial velocity363,648 km/s
Distance8.270 Gly
Apparent magnitude (V)19.30
Characteristics
TypeBlazar, FRSQ
Other designations
CTD 20, LEDA 2820023, 2E 609, 4FGL J0237.8+2848, OHIO D 258, TXS 0234+285, S1 0234+28, QSO J0237+2848

4C +28.07 is a blazar[1] located in the constellation of Aries. It has a redshift of 1.213[2][3] and was first discovered in 1970 as a compact astronomical radio source during an interferometer observation and designated as CTD 20.[4] The radio spectrum of the source is considered flat, making it a flat-spectrum radio quasar.[5][6] It is one of the brightest blazars observed in the gamma ray energy band.[5]

Description

[edit]

4C +28.07 is found variable on the electromagnetic spectrum. It is known to show intense gamma ray activity observed by Fermi Large Area Telescope on October 3, 2011.[7] In additional to gamma ray activity, 4C +28.07 also shows near-infrared flares.[8][9][10] Between 16 January 2013 and 13 March 2020, four strong gamma ray flares were observed by Fermi LAT, during the Interferometric Monitoring of Gamma-ray Bright Active Galactic Nuclei (iMOGABA) program.[11]

A bright and rapid flare was detected in 4C +28.07 in October 2018. The flare lasted 30 minutes and its gamma ray flux reached a maximum peak of 6.7 ± 0.81 x 10−6 photon cm−2 s−1. This flux is 31 times higher than the average flux. Furthermore, its spectrum, extended upwards to 316 GeV before hardening beyond 60 GeV.[5]

Multiepoch Very Long Baseline Array (VLBA) radio imaging at 22 GHz, 4C +28.07 shows a radio core and a prominent jet projecting northwards out by 3.5 mas from it, modelled by three main stationary components with one of them showing a complex structure both along it and in transverse direction.[12] There is presence of extended emission[13] and a diffused secondary component.[14]

According to radio band observations by Very Long Baseline Interferometry (VLBI), the jet of 4C +28.07 is described having a one-sided structure on parsec scales. It has a jet speed of (10.11 ± 0.39)c implying superluminal motion[5] and is suggested of a "kink" observed in 3C 273 with the jet jumping sideways and resuming its original position.[15] When observed by Chandra X-ray observatory, the jet shows a sharp bend at a -90° position angle which subsequently terminates at a bright component within 3 mas.[16]

The supermassive black hole in 4C +28.07 is estimated to be 1.65+1.66-0.82 x 109 Mʘ based on an optical spectroscopy conducted on flat-spectrum radio quasars.[5][17]

References

[edit]
  1. ^ Vlasyuk, V.V.; Moskvitin, A.S.; Spiridonova, O.I.; V.S., Bychkova (October 2018). "SAO RAS Observations of current brightening of [HB89] 0234+285 blazar". The Astronomer's Telegram. 12111: 1. Bibcode:2018ATel12111....1V.
  2. ^ Carrasco, L.; Escobedo, G.; Porras, A.; Recillas, E.; Mayya, D. (2021-12-01). "Significant NIR brightening of the Blazar 4C+28.07". The Astronomer's Telegram. 15084: 1. Bibcode:2021ATel15084....1C.
  3. ^ Costamante, L; Cutini, S; Tosti, G; Antolini, E; Tramacere, A (2018-05-03). "On the origin of gamma-rays in Fermi blazars: beyondthe broad-line region". Monthly Notices of the Royal Astronomical Society. 477 (4): 4749–4767. arXiv:1804.02408. doi:10.1093/mnras/sty887. ISSN 0035-8711.
  4. ^ Kellermann, K. I.; Clark, B. G.; Jauncey, D. L.; Cohen, M. H.; Shaffer, D. B.; Moffet, A. T.; Gulkis, S. (1970-09-01). "High-Resolution Observations of Compact Radio Sources at 13 Centimeters". The Astrophysical Journal. 161: 803. Bibcode:1970ApJ...161..803K. doi:10.1086/150584. ISSN 0004-637X.
  5. ^ a b c d e Zargaryan, Davit; Mackey, Jonathan; Barnouin, Thibault; Aharonian, Felix (2021-12-04). "Multiwavelength observations of the Blazar 4C + 28.07". Monthly Notices of the Royal Astronomical Society. 510 (1): 1118–1127. arXiv:2109.08752. doi:10.1093/mnras/stab3538. ISSN 0035-8711.
  6. ^ Das, Avik Kumar; Prince, Raj; Gupta, Nayantara (October 2021). "Multi-Wavelength Study of 4C+28.07". The Astrophysical Journal. 920 (2): 117. arXiv:2107.10555. Bibcode:2021ApJ...920..117D. doi:10.3847/1538-4357/ac178c. ISSN 0004-637X.
  7. ^ Sokolovsky, K. V.; D'Ammando, F.; Schinzel, F. K.; Kennea, J. A. (2011-10-01). "Swift follow up observations of the flaring gamma-ray blazar 4C +28.07". The Astronomer's Telegram. 3676: 1. Bibcode:2011ATel.3676....1S.
  8. ^ Carrasco, L.; Recillas, E.; Escobedo, G.; Porras, A.; Mayya, D.; Chavushyan, V. (2021-11-01). "Another Fast NIR Flare of the Blazar BZQJ0237+2848". The Astronomer's Telegram. 15031: 1. Bibcode:2021ATel15031....1C.
  9. ^ Carrasco, L.; Escobedo, G.; Recillas, E.; Porras, A.; Chavushyan, V. (2018-12-01). "Further NIR brightening of the high redshift the blazar BZQJ0237+2848". The Astronomer's Telegram. 12321: 1. Bibcode:2018ATel12321....1C.
  10. ^ Carrasco, L.; Porras, A.; Recillas, E.; Chavushyan, V.; Mayya, D. Y. (2017-02-01). "A NIR Flare of the QSO [HB89] 0234+285". The Astronomer's Telegram. 10034: 1. Bibcode:2017ATel10034....1C.
  11. ^ Nam, Myoung-Seok; Lee, Sang-Sung; Cheong, Whee Yeon (2023-11-01). "Interferometric Monitoring of Gamma-Ray Bright AGNs: 4C +28.07 and Its Synchrotron Self-Absorption Spectrum". Journal of Korean Astronomical Society. 56 (2): 231–252. arXiv:2311.15325. Bibcode:2023JKAS...56..231N. doi:10.5303/JKAS.2023.56.2.231. ISSN 1225-4614.
  12. ^ Jorstad, Svetlana G.; Marscher, Alan P.; Mattox, John R.; Wehrle, Ann E.; Bloom, Steven D.; Yurchenko, Alexei V. (June 2001). "Multiepoch Very Long Baseline Array Observations of EGRET-detected Quasars and BL Lacertae Objects: Superluminal Motion of Gamma-Ray Bright Blazars". The Astrophysical Journal Supplement Series. 134 (2): 181–240. arXiv:astro-ph/0101570. Bibcode:2001ApJS..134..181J. doi:10.1086/320858. ISSN 0067-0049.
  13. ^ Dodson, R.; Fomalont, E. B.; Wiik, K.; Horiuchi, S.; Hirabayashi, H.; Edwards, P. G.; Murata, Y.; Asaki, Y.; Moellenbrock, G. A.; Scott, W. K.; Taylor, A. R.; Gurvits, L. I.; Paragi, Z.; Frey, S.; Shen, Z.-Q. (April 2008). "The VSOP 5 GHz Active Galactic Nucleus Survey. V. Imaging Results for the Remaining 140 Sources". The Astrophysical Journal Supplement Series. 175 (2): 314–355. arXiv:0710.5707. Bibcode:2008ApJS..175..314D. doi:10.1086/525025. ISSN 0067-0049.
  14. ^ Kellermann, K. I.; Vermeulen, R. C.; Zensus, J. A.; Cohen, M. H. (April 1998). "Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei". The Astronomical Journal. 115 (4): 1295–1318. arXiv:astro-ph/9801010. Bibcode:1998AJ....115.1295K. doi:10.1086/300308. ISSN 0004-6256.
  15. ^ Wehrle, Ann E.; Cohen, Marshall H.; Unwin, Stephen C.; Aller, Hugh D.; Aller, Margo F.; Nicolson, George (June 1992). "The milliarcsecond structure of highly variable radio sources". The Astrophysical Journal. 391: 589. Bibcode:1992ApJ...391..589W. doi:10.1086/171373. ISSN 0004-637X.
  16. ^ Marshall, H. L.; Gelbord, J. M.; Schwartz, D. A.; Murphy, D. W.; Lovell, J. E. J.; Worrall, D. M.; Birkinshaw, M.; Perlman, E. S.; Godfrey, L.; Jauncey, D. L. (2011-03-01). "An X-ray IMAGING SURVEY OF QUASAR JETS: TESTING THE INVERSE COMPTON MODEL". The Astrophysical Journal Supplement Series. 193 (1): 15. arXiv:1101.5822. Bibcode:2011ApJS..193...15M. doi:10.1088/0067-0049/193/1/15. ISSN 0067-0049.
  17. ^ Shaw, Michael S.; Romani, Roger W.; Cotter, Garret; Healey, Stephen E.; Michelson, Peter F.; Readhead, Anthony C. S.; Richards, Joseph L.; Max-Moerbeck, Walter; King, Oliver G.; Potter, William J. (2012-03-05). "Spectroscopy of Broad-Line Blazars from 1Lac". The Astrophysical Journal. 748 (1): 49. arXiv:1201.0999. Bibcode:2012ApJ...748...49S. doi:10.1088/0004-637x/748/1/49. ISSN 0004-637X.
[edit]