Jump to content

Anoxybacillus

From Wikipedia, the free encyclopedia

Anoxybacillus
Scientific classification
Domain:
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Anoxybacillus

Pikuta et al. 2000[1]
Type species
Anoxybacillus pushchinoensis
corrig. Pikuta et al. 2000
Species[2]

See text

Anoxybacillus is a genus of rod-shaped, spore-forming bacteria from the family of Bacillaceae.[3][4] Anoxybacillus occur in geothermal springs, manure and milk processing plants.[5]

The genus Anoxybacillus contains facultatively anaerobic, thermophilic, spore-forming bacteria that have garnered a lot of attention because of their possible uses in biotechnology. They can be found in hard conditions like hot springs and geothermal soils, and because of their remarkable resilience, they are a significant subject for both industrial development and scientific study.

Introduction

The capacity to flourish in hot conditions sets apart the genus Anoxybacillus, which belongs to the Bacillaceae family. Numerous species have been isolated from various geothermal settings worldwide since its original discovery, such as dairy processing facilities, compost heaps, and hot springs (Pikuta et al., 2000). Anoxybacillus species' traits, ecological significance, and industrial uses are examined in this article.

Characteristics of Anoxybacillus

[edit]

Anoxybacillus species exhibit several features that enable survival in extreme environments:

  • They are rod-shaped, Gram-positive, and capable of forming endospores (Pikuta et al., 2000).
  • They are typically facultatively anaerobic, meaning they can grow with or without oxygen.
  • As thermophiles, they thrive at temperatures between 45°C and 70°C, with some species tolerating even higher temperatures (Goh et al., 2013).

These changes make it possible for Anoxybacillus species to live in places like hot springs, industrial heating systems, and geothermal soils. According to Peng et al. (2020), their ability to withstand high temperatures and unstable oxygen levels points to a significant ecological role in the breakdown of organic materials and the cycling of nutrients. According to Goh et al. (2013), certain species are also capable of withstanding metals, which makes them excellent choices for environmental biopsies.

Industrial Applications of Anoxybacillus

[edit]

The genus has attracted attention for several industrial uses:

  • Production of Thermostable Enzymes: Species of Anoxybacillus produce enzymes such as amylases, proteases, and lipases, which are widely used in the food processing, pharmaceutical, and biofuel manufacturing industries (Peng et al., 2020).
  • Bioremediation: Some species are effective in decomposing pollutants and hazardous compounds, even under extreme conditions, making them valuable for waste treatment (Goh et al., 2013).
  • Food and Dairy Industry: Anoxybacillus flavithermus, a well-researched species, is frequently found in dairy processing environments and is notable for its role in biofilm formation, which can impact pasteurization procedures (Pikuta et al., 2000; Goh et al., 2013).

Conclusion

The interesting group of thermophilic bacteria of the genus Anoxybacillus has wide-ranging scientific and industrial applications. In addition to producing thermostable enzymes and having the capacity for bioremediation, their exceptional resistance to harsh environments makes them valuable organisms for further study and technological use.

Phylogeny

[edit]

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[1] and National Center for Biotechnology Information (NCBI).[2]

16S rRNA based LTP_10_2024[6][7][8] 120 marker proteins based GTDB 09-RS220[9][10][11]

Anoxybacillus sediminis Khan et al. 2019

other

Anoxybacillus
(Thermaerobacillus)

A. caldiproteolyticus Chen et al. 2004 ex Coorevits et al. 2012

(Anoxybacteroides)

A. geothermale Filippidou et al. 20164

A. rupiense Derekova et al. 2008

A. tepidamans (Schäffer et al. 2004) Coorevits et al. 2012

A. amylolyticum Poli et al. 2006

A. contaminans De Clerck et al. 2004

A. voinovskiense Yumoto et al. 2004

A. calidus Cihan et al. 2014

A. vitaminiphilus Zhang et al. 2013

A. bogrovensis Atanassova et al. 2008

(Anoxybacillus)

A. ayderensis Dulger, Demirbag & Belduz 2004

A. salavatliensis Cihan, Ozcan & Cokmus 2011

Flavobacterium thermophilum Loginova & Egorova 1982

A. gonensis Belduz, Dulger & Demirbag 2003

A. kamchatkensis Kevbrin et al. 2006

A. kaynarcensis Inan, Belduz & Canakci 2013

A. thermarum Poli et al. 2011

A. karvacharensis Panosyan, Margaryan & Birkeland 2021[12]

A. kestanbolensis Dulger, Demirbag & Belduz 2004

A. flavithermus Heinen, Lauwers & Mulders 1982 ex Pikuta et al. 2000

A. pushchinoensis corrig. Pikuta et al. 2000

A. tengchongensis Zhang et al. 2011

A. flavithermus yunnanensis Dai et al. 2011

A. eryuanensis Zhang et al. 2011

A. mongoliensis Namsaraev et al. 2011

Thermolongibacillus

Anoxybacillus 

A. pushchinoensis

A. ayderensis [A. salavatliensis]

A. gonensis [A. kamchatkensis]

A. thermarum

A. kestanbolensis

A. flavithermus [A. karvacharensis[13]]

A. mongoliensis

A. tengchongensis ["A. suryakundensis" Deep, Poddar & Das 2013]

Paranoxybacillus

P. vitaminiphilus

Anoxybacillus calidus

Anoxybacteroides

A. rupiense

A. tepidamans

A. amylolyticum

A. voinovskiense

Thermaerobacillus caldiproteolyticus

other

Unassigned species:

  • "A. beppuensis" Muramatsu, Takamatsu & Nakashima 2005
  • "A. hidirlerensis" Belduz, Inan & Canakci 2007
  • "A. kualawohkensis" Azura et al. 2006 ex Paul et al. 2012
  • "A. toebii" Bae et al. 2005
  • "A. tunisiense" Sayeh et al. 2007

See also

[edit]

References

[edit]
  1. ^ a b A.C. Parte; et al. "Anoxybacillus". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2025-02-28.
  2. ^ a b C.L. Schoch; et al. "Anoxybacillus". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2025-02-28.
  3. ^ UniProt
  4. ^ De Vos, Paul; et al., eds. (2009). Bergey's manual of systematic bacteriology (2nd ed.). Dordrecht: Springer. ISBN 978-0-387-68489-5.
  5. ^ Goh, Kian Mau; Gan, Han Ming; Chan, Kok-Gan; Chan, Giek Far; Shahar, Saleha; Chong, Chun Shiong; Kahar, Ummirul Mukminin; Chai, Kian Piaw; Zhang, Ren (6 March 2014). "Analysis of Anoxybacillus Genomes from the Aspects of Lifestyle Adaptations, Prophage Diversity, and Carbohydrate Metabolism". PLOS ONE. 9 (3): e90549. Bibcode:2014PLoSO...990549G. doi:10.1371/journal.pone.0090549. PMC 3948429. PMID 24603481. * De Vos, Paul; et al., eds. (2009). Bergey's manual of systematic bacteriology (2nd ed.). Dordrecht: Springer. ISBN 978-0-387-68489-5.
  6. ^ "The LTP". Retrieved 10 December 2024.
  7. ^ "LTP_all tree in newick format". Retrieved 10 December 2024.
  8. ^ "LTP_10_2024 Release Notes" (PDF). Retrieved 10 December 2024.
  9. ^ "GTDB release 09-RS220". Genome Taxonomy Database. Retrieved 10 May 2024.
  10. ^ "bac120_r220.sp_labels". Genome Taxonomy Database. Retrieved 10 May 2024.
  11. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2024.
  12. ^ Anoxybacillus karvacharensis sp. nov., a novel thermophilic bacterium isolated from the Karvachar geothermal spring in Nagorno-Karabakh
  13. ^ Anoxybacillus karvacharensis sp. nov., a novel thermophilic bacterium isolated from the Karvachar geothermal spring in Nagorno-Karabakh


References

[edit]

Further reading

[edit]