Jump to content

Clarkson's inequalities

From Wikipedia, the free encyclopedia

In mathematics, Clarkson's inequalities, named after James A. Clarkson, are results in the theory of Lp spaces. They give bounds for the Lp-norms of the sum and difference of two measurable functions in Lp in terms of the Lp-norms of those functions individually.

Statement of the inequalities

[edit]

Let (X, Σ, μ) be a measure space; let fg : X → R be measurable functions in Lp. Then, for 2 ≤ p < +∞,

For 1 < p < 2,

where

i.e., q = p ⁄ (p − 1).

References

[edit]
  • Clarkson, James A. (1936), "Uniformly convex spaces", Transactions of the American Mathematical Society, 40 (3): 396–414, doi:10.2307/1989630, JSTOR 1989630, MR 1501880.
  • Hanner, Olof (1956), "On the uniform convexity of Lp and p", Arkiv för Matematik, 3 (3): 239–244, Bibcode:1956ArM.....3..239H, doi:10.1007/BF02589410, MR 0077087.
  • Friedrichs, K. O. (1970), "On Clarkson's inequalities", Communications on Pure and Applied Mathematics, 23 (4): 603–607, doi:10.1002/cpa.3160230405, MR 0264372.
[edit]