Convex bipartite graph
Appearance

In the mathematical field of graph theory, a convex bipartite graph is a bipartite graph with specific properties. A bipartite graph, (U ∪ V, E), is said to be convex over the vertex set U if U can be enumerated such that for all v ∈ V the vertices adjacent to v are consecutive. Convexity over V is defined analogously. A bipartite graph (U ∪ V, E) that is convex over both U and V is said to be biconvex or doubly convex.[1][2][3][4]
See also
[edit]References
[edit]- ^ W. Lipski Jr.; Franco P. Preparata (August 1981). "Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems". Acta Informatica. 15 (4): 329–346. doi:10.1007/BF00264533. hdl:2142/74215. S2CID 39361123.
- ^ Ten-hwang Lai; Shu-shang Wei (April 1997). "Bipartite permutation graphs with application to the minimum buffer size problem". Discrete Applied Mathematics. 74 (1): 33–55. doi:10.1016/S0166-218X(96)00014-5. Retrieved 2009-07-20.
- ^ Jeremy P. Spinrad (2003). Efficient graph representations. AMS Bookstore. p. 128. ISBN 978-0-8218-2815-1. Retrieved 2009-07-20.
- ^ Andreas Brandstädt; Van Bang Le; Jeremy P. Spinrad (1999). Graph classes: a survey. SIAM. p. 94. ISBN 978-0-89871-432-6. Retrieved 2009-07-20.
convex if there is an ordering.