From Wikipedia, the free encyclopedia
In mathematics, Ferrers functions are certain special functions defined in terms of hypergeometric functions.[1]
They are named after Norman Macleod Ferrers[citation needed].
When the order μ and the degree ν are real and x ∈ (-1,1)
- Ferrers function of the first kind

- Ferrers function of the second kind

- ^ Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Ferrers Function", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.