Jump to content

Gordon Wallace (nanotechnologist)

From Wikipedia, the free encyclopedia

Gordon Wallace
Born
Gordon George Wallace

Title
  • Distinguished Professor at the University of Wollongong
  • Director of the Intelligent Polymer Research Institute, University of Wollongong
Awards
Academic work
InstitutionsUniversity of Wollongong

Gordon George Wallace is a scientist in the field of electromaterials. His students and collaborators use of nanotechnology in conjunction with organic conductors for energy conversion and storage as well as medical bionics.[1] He has developed approaches to fabrication that allow material properties discovered in the nano world to be translated into micro structures and macro scopic devices.

Wallace's research interests include new materials and the use of these in energy and biomedical devices.[2]

Wallace is currently Director of the Intelligent Polymer Research Institute[3] and the former Director of the Australian National Fabrication Facility (Materials Node)[4] both headquartered at the University of Wollongong.[5] He was also previously Executive Research Director at the ARC Centre of Excellence for Electromaterials Science[2] as well as Director of the Translational Research Initiative for Cellular Engineering and Printing (TRICEP).

Career

[edit]

Wallace graduated with a BSc Honours (chemistry and physics) in 1979 and then received a PhD in 1983. [citation needed]

He was awarded an Australian Research Council QEII Fellowship in 1991, an ARC Senior Research Fellowship in 1995, an ARC Professorial Fellowship in 2002 and a Federation Fellowship in 2006.[6] He was awarded a DSc from Deakin University in 2000.[citation needed]

Research years

[edit]

Wallace asserted that this instability could, if understood, be directed and controlled, allowing the creation of "intelligent" polymers – materials that sense and respond to stimuli.[7]

In September 2008, Wallace's team moved to research facilities at the University of Wollongong's new Innovation Campus based at North Wollongong.[8]

He published the book Organic Bionics.[9] He has an h index of 110 and has amassed in excess of 60,000 citations.[10]

Awards and honours

[edit]
  • He was appointed to the Prime Ministers Knowledge Nation 100 in 2015. He received the Eureka Prize for Leadership in Science and Innovation in 2016.[15][16]

Selected publications

[edit]
  • John, R.; Wallace, G.G. (1991). "The use of microelectrodes to probe the electropolymerization mechanism of heterocyclic conducting polymers". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 306 (1–2): 157–167. doi:10.1016/0022-0728(91)85228-h.
  • Majidi, Mir Reza; Kane-Maguire, Leon A.P.; Wallace, Gordon G. (1994). "Enantioselective electropolymerization of aniline in the presence of (+)- or (−)-camphorsulfonate ion: a facile route to conducting polymers with preferred one-screw-sense helicity". Polymer. 35 (14): 3113–3115. doi:10.1016/0032-3861(94)90427-8.
  • Gelmi, Amy; Higgins, Michael J.; Wallace, Gordon G. (2010). "Physical surface and electromechanical properties of doped polypyrrole biomaterials". Biomaterials. 31 (8): 1974–1983. doi:10.1016/j.biomaterials.2009.11.040. PMID 20056273.
  • Gandhi, M.R.; Murray, P.; Spinks, G.M.; Wallace, G.G. (1995). "Mechanism of electromechanical actuation in polypyrrole". Synthetic Metals. 73 (3): 247–256. doi:10.1016/0379-6779(95)80022-0.
  • Zhao, H.; Price, W.E.; Wallace, G.G. (1994). "Effect of the counterion employed during synthesis on the properties of polypyrrole membranes". Journal of Membrane Science. 87 (1–2): 47–56. doi:10.1016/0376-7388(93)e0053-g.
  • Spinks, G.M.; Liu, L.; Wallace, G.G.; Zhou, D. (2002). "Strain Response From Polypyrrole Actuators Under Load". Advanced Functional Materials. 12 (6–7): 437–440. doi:10.1002/1616-3028(20020618)12:6/7<437::aid-adfm437>3.0.co;2-i.
  • Gilmore, Kerry J.; Kita, Magdalena; Han, Yao; Gelmi, Amy; Higgins, Michael J.; Moulton, Simon E.; Clark, Graeme M.; Kapsa, Robert; Wallace, Gordon G. (2009). "Skeletal muscle cell proliferation and differentiation on polypyrrole substrates doped with extracellular matrix components". Biomaterials. 30 (29): 5292–5304. doi:10.1016/j.biomaterials.2009.06.059. PMID 19643473.
  • O’Connell, Cathal D.; Bella, Claudia Di; Thompson, Fletcher; Augustine, Cheryl; Beirne, Stephen; Rhys Cornock; Richards, Christopher J.; Chung, Johnson; Gambhir, Sanjeev (2016). "Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site". Biofabrication. 8 (1): 015019. Bibcode:2016BioFa...8a5019O. doi:10.1088/1758-5090/8/1/015019. ISSN 1758-5090. PMID 27004561. S2CID 28304232.
  • "Li, Dan; Müller, Marc B.; Gilje, Scott; Kaner, Richard B.; Wallace, Gordon G. (2008). "Processable aqueous dispersions of graphene nanosheets". Nature Nanotechnology. 3 (2): 101–105. Bibcode:2008NatNa...3..101L. doi:10.1038/nnano.2007.451. PMID 18654470.
  • Baughman, Ray H.; Cui, Changxing; Zakhidov, Anvar A.; Iqbal, Zafar; Barisci, Joseph N.; Spinks, Geoff M.; Wallace, Gordon G.; Mazzoldi, Alberto; Rossi, Danilo De (21 May 1999). "Carbon Nanotube Actuators". Science. 284 (5418): 1340–1344. Bibcode:1999Sci...284.1340B. doi:10.1126/science.284.5418.1340. ISSN 0036-8075. PMID 10334985.

References

[edit]
  1. ^ "ARC Centre of Excellence for Electromaterials Science". www.electromaterials.edu.au. Retrieved 19 May 2017.
  2. ^ a b "Professor Gordon Wallace - Our People - ARC Centre of Excellence for Electromaterials Science". www.electromaterials.edu.au. Retrieved 19 May 2017.
  3. ^ "Professor Gordon G. Wallace". ipri.uow.edu.au. Retrieved 19 May 2017.
  4. ^ "Materials Node | www.anff.org.au". www.anff.org.au. Retrieved 19 May 2017.
  5. ^ "University of Wollongong, Australia". www.uow.edu.au. Archived from the original on 15 April 2016. Retrieved 19 May 2017.
  6. ^ G., Wallace, Gordon (2009). Conductive electroactive polymers intelligent polymer systems. CRC. pp. xiii. ISBN 978-1420067156. OCLC 851042729.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. ^ "Professor Gordon Wallace | TEDxUWollongong". tedxuwollongong.com. Retrieved 19 May 2017.
  8. ^ SHAW, EMMA (8 March 2009). "New Innovation Campus centre will reshape world". Illawarra Mercury. Retrieved 19 May 2017.
  9. ^ G., Wallace, Gordon (2012). Organic bionics. Wiley-VCH. ISBN 9783527328826. OCLC 850975416.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. ^ "Scopus preview - Scopus - Author details (Wallace, Gordon G.)". www.scopus.com. Retrieved 19 May 2017.
  11. ^ Media, Australian Community Media - Fairfax (26 January 2017). "Meet the Illawarra's Australia Day honours recipients". Illawarra Mercury. Retrieved 19 May 2017.
  12. ^ 2017 NSW Scientist of the Year Archived 1 December 2017 at the Wayback Machine
  13. ^ "2017 NSW Scientist of the Year - NSW Chief Scientist & Engineer". www.chiefscientist.nsw.gov.au. Archived from the original on 1 December 2017. Retrieved 27 November 2017.
  14. ^ "Infrastructure, health, entertainment technologies to be advanced at SPIE Smart Structures/NDE". spie.org. Retrieved 19 May 2017.
  15. ^ "Academy congratulates 2016 Eureka Prize winners | Australian Academy of Science". www.science.org.au. Retrieved 19 May 2017.
  16. ^ "5 of the coolest things we spotted at Eureka Prize 2016". ABC News. 31 August 2016. Retrieved 19 May 2017.
  17. ^ "Australian Laureate Fellows for 2011 announced". Research Career. 10 August 2011. Retrieved 3 May 2020.
  18. ^ "Admittance Day 2023". www.ria.ie. Royal Irish Academy. Retrieved 27 May 2023.