Jump to content

Ivan Erill

From Wikipedia, the free encyclopedia
Ivan Erill
Ivan Erill in 2019.
Born1972 (age 52–53)
Spain
Alma mater
Known forbacterial comparative genomics
Scientific career
Fields
Institutions
ThesisHigh-speed Polymerase chain reaction in CMOS-compatible chips (2003)
Doctoral advisor
  • Jordi Barbé
  • Jordi Aguiló
Websiteerilllab.umbc.edu

Ivan Erill is a Spanish computational biologist known for his research in comparative genomics and molecular microbiology. His work focuses primarily on bacterial comparative genomics, through the development of computational methods for analyzing regulatory networks and their evolution.[1][4]

Education and career

[edit]

Ivan Erill obtained a B.S. in Computer Science in 1996 and a PhD in Computer Science in 2003 from the Autonomous University of Barcelona, for his work on the design of microelectromechanical systems for DNA analysis at the CSIC Microelectronics Institute of Barcelona .[3] In 2008 he became an assistant professor at the Department of Biological Sciences of the University of Maryland, Baltimore County. He promoted to associate professor in 2014 and to full professor in 2022.[2]

Research

[edit]

Ivan Erill initiated his research career working on the development of microelectromechanical systems for biomedical applications. His work featured the design of PCR and DNA electrophoresis devices on CMOS-compatible substrates to facilitate the integration of on-chip control and detection circuitry [5] and the design of sensing microneedles to monitor heart ischemia and organ grafts, leading to the first continuous monitoring of transplant organ temperature during transportation.[6]

His work on microbial comparative genomics has focused primarily on the study of transcription regulatory networks. Working on the SOS response as a model network, Erill developed RCGScanner [7] and later CGB [8] to analyze the evolution of this transcriptional system in multiple bacterial groups, revealing that this response against DNA damage is evolutionary based on translesion synthesis and not DNA repair as traditionally assumed.[9] In collaboration with other groups, he has described multiple divergent binding motifs for the SOS transcriptional repressor,[9][10] and shown that SOS networks can be regulated by transcriptional repressors encoded by bacteriophages.[11]

Erill's work has focused also on the evolutionary dynamics of transcription factors and their binding sites, using evolutionary simulations and information theory-based analyses,[12][13] as well as comparative analyses of TF-binding motifs leveraging the CollecTF database developed by his laboratory.[14][15] He has also applied genomics approaches to elucidate the evolution of antibiotic resistance genes and their dissemination, revealing that resistance genes may predate the development of antimicrobial compounds,[16][17] and that antibiotics can induce the dissemination of resistance genes by inducing lateral gene transfer mediated by integrons and other mobile genetic elements.[18]

References

[edit]
  1. ^ a b Ivan Erill publications indexed by Google Scholar
  2. ^ a b "Ivan Erill - Department of Biological Sciences". University of Maryland, Baltimore County.
  3. ^ a b Ivan Erill (2003). "High-speed Polymerase chain reaction in CMOS-compatible chips". Autonomous University of Barcelona. hdl:10803/3031.
  4. ^ "PubMed Indexed Publications (Ivan Erill)".
  5. ^ Erill, I.; Campoy, S.; Rus, J.; Ivorra, A.; Navarro, Z.; Plaza, JA.; Aguiló, J.; Barbé, J. (2004). "Development of a CMOS-compatible PCR chip: comparison of design and system strategies". Journal of Micromechanics and Microengineering. 14 (11): 1558–1568. Bibcode:2004JMiMi..14.1558E. doi:10.1088/0960-1317/14/11/018. ISSN 0960-1317.
  6. ^ Villa, R.; Fondevila, C.; Erill, I.; Guimerà, A.; Bombuy, E.; Gómez-Suárez, C.; Sacristán, JC.; García-Valdecasas, JC. (2006). "Real-time direct measurement of human liver allograft temperature from recovery to transplantation". Transplantation. 81 (3): 483–486. doi:10.1097/01.tp.0000195903.12999.bc. ISSN 1534-6080. PMID 16477240.
  7. ^ Erill, I.; Jara, M.; Salvador, N.; Escribano, M.; Bombuy, E.; Campoy, s.; Barbé, J. (2004). "Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics". Nucleic Acids Res. 32 (22): 6617–6626. doi:10.1093/nar/gkh996. ISSN 1362-4962. PMC 545464. PMID 15604457.
  8. ^ Kılıç, S.; Sánchez-Osuna, M.; Collado-Padilla, A.; Barbé, J.; Erill, I. (2020). "Flexible comparative genomics of prokaryotic transcriptional regulatory networks". BMC Genomics. 21 (Suppl 5): 466. doi:10.1186/s12864-020-06838-x. ISSN 1471-2164. PMC 7739468. PMID 33327941.
  9. ^ a b Erill, I.; Campoy, S.; Barbé, J. (2007). "Aeons of distress: an evolutionary perspective on the bacterial SOS response". FEMS Microbiology Reviews. 31 (6): 637–656. doi:10.1111/j.1574-6976.2007.00082.x. ISSN 1574-6976. PMID 17883408.
  10. ^ Erill, I.; Campoy, S.; Kılıç, S.; Barbé, J. (2016). "The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response". Frontiers in Molecular Biosciences. 3: 33. doi:10.3389/fmolb.2016.00033. ISSN 2296-889X. PMC 4951493. PMID 27489856.
  11. ^ Sánchez-Osuna, M.; Campoy, S.; Cortés, P.; Lee, M.; Smith, A.T.; Barbé, J.; Erill, I. (2021). "Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes". Nucleic Acids Res. 49 (19): 11050–11066. doi:10.1093/nar/gkab773. ISSN 1362-4962. PMC 8565304. PMID 34614190.
  12. ^ O'Neill, P.K.; Forder, R.; Erill, I. (2014). "Informational Requirements for Transcriptional Regulation". Journal of Computational Biology. 21 (5): 373–384. doi:10.1089/cmb.2014.0032. ISSN 1557-8666. PMC 4010175. PMID 24689750.
  13. ^ Erill, I.; O'Neill, M.C. (2009). "A reexamination of information theory-based methods for DNA-binding site identification". BMC Bioinformatics. 10: 57. doi:10.1186/1471-2105-10-57. ISSN 1471-2105. PMC 2680408. PMID 19210776.
  14. ^ Kılıç, S.; Erill, I. (2016). "Assessment of transfer methods for comparative genomics of regulatory networks in bacteria". BMC Bioinformatics. 17 (Suppl 8): 373–384. doi:10.1186/s12859-016-1113-7. ISSN 1471-2105. PMC 5009822. PMID 27586594.
  15. ^ Kilic, S.; White, E. R.; Sagitova, D. M.; Cornish, J. P.; Erill, I. (14 November 2013). "CollecTF: a database of experimentally validated transcription factor-binding sites in Bacteria". Nucleic Acids Research. 42 (D1): D156 – D160. doi:10.1093/nar/gkt1123. PMC 3965012. PMID 24234444.
  16. ^ Sánchez-Osuna, M.; Cortés, P.; Barbé, J.; Erill, I. (2019). "Origin of the Mobile Di-Hydro-Pteroate Synthase Gene Determining Sulfonamide Resistance in Clinical Isolates". Frontiers in Microbiology. 9: 3332. doi:10.3389/fmicb.2018.03332. ISSN 1664-302X. PMC 6335563. PMID 30687297.
  17. ^ Sánchez-Osuna, M.; Cortés, P.; Llagostera, M.; Barbé, J.; Erill, I. (2020). "Exploration into the origins and mobilization of di-hydrofolate reductase genes and the emergence of clinical resistance to trimethoprim". Microbial Genomics. 6 (11). doi:10.1099/mgen.0.000440. ISSN 2057-5858. PMC 7725336. PMID 32969787.
  18. ^ Guerin, E.; Cambray, G.; Sanchez-Alberola, N.; Campoy, S.; Erill, I.; Da Re, S.; González-Zorn, B.; Barbé, J.; Ploy, M-C.; Mazel, D. (2009). "The SOS response controls integron recombination". Science. 324 (5930): 1034–1035. Bibcode:2009Sci...324.1034G. doi:10.1126/science.1172914. ISSN 2057-5858. PMID 19460999. S2CID 42334786.