In functional programming , a monad transformer is a type constructor which takes a monad as an argument and returns a monad as a result.
Monad transformers can be used to compose features encapsulated by monads – such as state, exception handling , and I/O – in a modular way. Typically, a monad transformer is created by generalising an existing monad; applying the resulting monad transformer to the identity monad yields a monad which is equivalent to the original monad (ignoring any necessary boxing and unboxing).
A monad transformer consists of:
A type constructor t
of kind (* -> *) -> * -> *
Monad operations return
and bind
(or an equivalent formulation) for all t m
where m
is a monad, satisfying the monad laws
An additional operation, lift :: m a -> t m a
, satisfying the following laws:[ 1] (the notation `bind`
below indicates infix application):
lift . return = return
lift (m `bind` k) = (lift m) `bind` (lift . k)
Given any monad
M
A
{\displaystyle \mathrm {M} \,A}
, the option monad transformer
M
(
A
?
)
{\displaystyle \mathrm {M} \left(A^{?}\right)}
(where
A
?
{\displaystyle A^{?}}
denotes the option type ) is defined by:
r
e
t
u
r
n
:
A
→
M
(
A
?
)
=
a
↦
r
e
t
u
r
n
(
J
u
s
t
a
)
b
i
n
d
:
M
(
A
?
)
→
(
A
→
M
(
B
?
)
)
→
M
(
B
?
)
=
m
↦
f
↦
b
i
n
d
m
(
a
↦
{
return Nothing
if
a
=
N
o
t
h
i
n
g
f
a
′
if
a
=
J
u
s
t
a
′
)
l
i
f
t
:
M
(
A
)
→
M
(
A
?
)
=
m
↦
b
i
n
d
m
(
a
↦
r
e
t
u
r
n
(
J
u
s
t
a
)
)
{\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow \mathrm {M} \left(A^{?}\right)=a\mapsto \mathrm {return} (\mathrm {Just} \,a)\\\mathrm {bind} :&\mathrm {M} \left(A^{?}\right)\rightarrow \left(A\rightarrow \mathrm {M} \left(B^{?}\right)\right)\rightarrow \mathrm {M} \left(B^{?}\right)=m\mapsto f\mapsto \mathrm {bind} \,m\,\left(a\mapsto {\begin{cases}{\mbox{return Nothing}}&{\mbox{if }}a=\mathrm {Nothing} \\f\,a'&{\mbox{if }}a=\mathrm {Just} \,a'\end{cases}}\right)\\\mathrm {lift} :&\mathrm {M} (A)\rightarrow \mathrm {M} \left(A^{?}\right)=m\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} (\mathrm {Just} \,a))\end{array}}}
Given any monad
M
A
{\displaystyle \mathrm {M} \,A}
, the exception monad transformer
M
(
A
+
E
)
{\displaystyle \mathrm {M} (A+E)}
(where E is the type of exceptions) is defined by:
r
e
t
u
r
n
:
A
→
M
(
A
+
E
)
=
a
↦
r
e
t
u
r
n
(
v
a
l
u
e
a
)
b
i
n
d
:
M
(
A
+
E
)
→
(
A
→
M
(
B
+
E
)
)
→
M
(
B
+
E
)
=
m
↦
f
↦
b
i
n
d
m
(
a
↦
{
return err
e
if
a
=
e
r
r
e
f
a
′
if
a
=
v
a
l
u
e
a
′
)
l
i
f
t
:
M
A
→
M
(
A
+
E
)
=
m
↦
b
i
n
d
m
(
a
↦
r
e
t
u
r
n
(
v
a
l
u
e
a
)
)
{\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow \mathrm {M} (A+E)=a\mapsto \mathrm {return} (\mathrm {value} \,a)\\\mathrm {bind} :&\mathrm {M} (A+E)\rightarrow (A\rightarrow \mathrm {M} (B+E))\rightarrow \mathrm {M} (B+E)=m\mapsto f\mapsto \mathrm {bind} \,m\,\left(a\mapsto {\begin{cases}{\mbox{return err }}e&{\mbox{if }}a=\mathrm {err} \,e\\f\,a'&{\mbox{if }}a=\mathrm {value} \,a'\end{cases}}\right)\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow \mathrm {M} (A+E)=m\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} (\mathrm {value} \,a))\\\end{array}}}
Given any monad
M
A
{\displaystyle \mathrm {M} \,A}
, the reader monad transformer
E
→
M
A
{\displaystyle E\rightarrow \mathrm {M} \,A}
(where E is the environment type) is defined by:
r
e
t
u
r
n
:
A
→
E
→
M
A
=
a
↦
e
↦
r
e
t
u
r
n
a
b
i
n
d
:
(
E
→
M
A
)
→
(
A
→
E
→
M
B
)
→
E
→
M
B
=
m
↦
k
↦
e
↦
b
i
n
d
(
m
e
)
(
a
↦
k
a
e
)
l
i
f
t
:
M
A
→
E
→
M
A
=
a
↦
e
↦
a
{\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow E\rightarrow \mathrm {M} \,A=a\mapsto e\mapsto \mathrm {return} \,a\\\mathrm {bind} :&(E\rightarrow \mathrm {M} \,A)\rightarrow (A\rightarrow E\rightarrow \mathrm {M} \,B)\rightarrow E\rightarrow \mathrm {M} \,B=m\mapsto k\mapsto e\mapsto \mathrm {bind} \,(m\,e)\,(a\mapsto k\,a\,e)\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow E\rightarrow \mathrm {M} \,A=a\mapsto e\mapsto a\\\end{array}}}
Given any monad
M
A
{\displaystyle \mathrm {M} \,A}
, the state monad transformer
S
→
M
(
A
×
S
)
{\displaystyle S\rightarrow \mathrm {M} (A\times S)}
(where S is the state type) is defined by:
r
e
t
u
r
n
:
A
→
S
→
M
(
A
×
S
)
=
a
↦
s
↦
r
e
t
u
r
n
(
a
,
s
)
b
i
n
d
:
(
S
→
M
(
A
×
S
)
)
→
(
A
→
S
→
M
(
B
×
S
)
)
→
S
→
M
(
B
×
S
)
=
m
↦
k
↦
s
↦
b
i
n
d
(
m
s
)
(
(
a
,
s
′
)
↦
k
a
s
′
)
l
i
f
t
:
M
A
→
S
→
M
(
A
×
S
)
=
m
↦
s
↦
b
i
n
d
m
(
a
↦
r
e
t
u
r
n
(
a
,
s
)
)
{\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow S\rightarrow \mathrm {M} (A\times S)=a\mapsto s\mapsto \mathrm {return} \,(a,s)\\\mathrm {bind} :&(S\rightarrow \mathrm {M} (A\times S))\rightarrow (A\rightarrow S\rightarrow \mathrm {M} (B\times S))\rightarrow S\rightarrow \mathrm {M} (B\times S)=m\mapsto k\mapsto s\mapsto \mathrm {bind} \,(m\,s)\,((a,s')\mapsto k\,a\,s')\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow S\rightarrow \mathrm {M} (A\times S)=m\mapsto s\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} \,(a,s))\end{array}}}
Given any monad
M
A
{\displaystyle \mathrm {M} \,A}
, the writer monad transformer
M
(
W
×
A
)
{\displaystyle \mathrm {M} (W\times A)}
(where W is endowed with a monoid operation ∗ with identity element
ε
{\displaystyle \varepsilon }
) is defined by:
r
e
t
u
r
n
:
A
→
M
(
W
×
A
)
=
a
↦
r
e
t
u
r
n
(
ε
,
a
)
b
i
n
d
:
M
(
W
×
A
)
→
(
A
→
M
(
W
×
B
)
)
→
M
(
W
×
B
)
=
m
↦
f
↦
b
i
n
d
m
(
(
w
,
a
)
↦
b
i
n
d
(
f
a
)
(
(
w
′
,
b
)
↦
r
e
t
u
r
n
(
w
∗
w
′
,
b
)
)
)
l
i
f
t
:
M
A
→
M
(
W
×
A
)
=
m
↦
b
i
n
d
m
(
a
↦
r
e
t
u
r
n
(
ε
,
a
)
)
{\displaystyle {\begin{array}{ll}\mathrm {return} :&A\rightarrow \mathrm {M} (W\times A)=a\mapsto \mathrm {return} \,(\varepsilon ,a)\\\mathrm {bind} :&\mathrm {M} (W\times A)\rightarrow (A\rightarrow \mathrm {M} (W\times B))\rightarrow \mathrm {M} (W\times B)=m\mapsto f\mapsto \mathrm {bind} \,m\,((w,a)\mapsto \mathrm {bind} \,(f\,a)\,((w',b)\mapsto \mathrm {return} \,(w*w',b)))\\\mathrm {lift} :&\mathrm {M} \,A\rightarrow \mathrm {M} (W\times A)=m\mapsto \mathrm {bind} \,m\,(a\mapsto \mathrm {return} \,(\varepsilon ,a))\\\end{array}}}
Given any monad
M
A
{\displaystyle \mathrm {M} \,A}
, the continuation monad transformer maps an arbitrary type R into functions of type
(
A
→
M
R
)
→
M
R
{\displaystyle (A\rightarrow \mathrm {M} \,R)\rightarrow \mathrm {M} \,R}
, where R is the result type of the continuation. It is defined by:
r
e
t
u
r
n
:
A
→
(
A
→
M
R
)
→
M
R
=
a
↦
k
↦
k
a
b
i
n
d
:
(
(
A
→
M
R
)
→
M
R
)
→
(
A
→
(
B
→
M
R
)
→
M
R
)
→
(
B
→
M
R
)
→
M
R
=
c
↦
f
↦
k
↦
c
(
a
↦
f
a
k
)
l
i
f
t
:
M
A
→
(
A
→
M
R
)
→
M
R
=
b
i
n
d
{\displaystyle {\begin{array}{ll}\mathrm {return} \colon &A\rightarrow \left(A\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R=a\mapsto k\mapsto k\,a\\\mathrm {bind} \colon &\left(\left(A\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R\right)\rightarrow \left(A\rightarrow \left(B\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R\right)\rightarrow \left(B\rightarrow \mathrm {M} \,R\right)\rightarrow \mathrm {M} \,R=c\mapsto f\mapsto k\mapsto c\,\left(a\mapsto f\,a\,k\right)\\\mathrm {lift} \colon &\mathrm {M} \,A\rightarrow (A\rightarrow \mathrm {M} \,R)\rightarrow \mathrm {M} \,R=\mathrm {bind} \end{array}}}
Note that monad transformations are usually not commutative : for instance, applying the state transformer to the option monad yields a type
S
→
(
A
×
S
)
?
{\displaystyle S\rightarrow \left(A\times S\right)^{?}}
(a computation which may fail and yield no final state), whereas the converse transformation has type
S
→
(
A
?
×
S
)
{\displaystyle S\rightarrow \left(A^{?}\times S\right)}
(a computation which yields a final state and an optional return value).
This section
needs expansion . You can help by
adding to it .
(May 2008 )