Snub octaoctagonal tiling
Appearance
Snub octaoctagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.3.8.3.8 |
Schläfli symbol | s{8,4} sr{8,8} |
Wythoff symbol | | 8 8 2 |
Coxeter diagram | or |
Symmetry group | [8,8]+, (882) [8+,4], (8*2) |
Dual | Order-8-8 floret hexagonal tiling |
Properties | Vertex-transitive |
In geometry, the snub octaoctagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{8,8}.
Images
[edit]Drawn in chiral pairs, with edges missing between black triangles:
Symmetry
[edit]A higher symmetry coloring can be constructed from [8,4] symmetry as s{8,4}, . In this construction there is only one color of octagon.
Related polyhedra and tiling
[edit]Uniform octaoctagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [8,8], (*882) | |||||||||||
= = |
= = |
= = |
= = |
= = |
= = |
= = | |||||
{8,8} | t{8,8} |
r{8,8} | 2t{8,8}=t{8,8} | 2r{8,8}={8,8} | rr{8,8} | tr{8,8} | |||||
Uniform duals | |||||||||||
V88 | V8.16.16 | V8.8.8.8 | V8.16.16 | V88 | V4.8.4.8 | V4.16.16 | |||||
Alternations | |||||||||||
[1+,8,8] (*884) |
[8+,8] (8*4) |
[8,1+,8] (*4242) |
[8,8+] (8*4) |
[8,8,1+] (*884) |
[(8,8,2+)] (2*44) |
[8,8]+ (882) | |||||
= | = | = | = = |
= = | |||||||
h{8,8} | s{8,8} | hr{8,8} | s{8,8} | h{8,8} | hrr{8,8} | sr{8,8} | |||||
Alternation duals | |||||||||||
V(4.8)8 | V3.4.3.8.3.8 | V(4.4)4 | V3.4.3.8.3.8 | V(4.8)8 | V46 | V3.3.8.3.8 |
Uniform octagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[8,4], (*842) (with [8,8] (*882), [(4,4,4)] (*444) , [∞,4,∞] (*4222) index 2 subsymmetries) (And [(∞,4,∞,4)] (*4242) index 4 subsymmetry) | |||||||||||
= = = |
= |
= = = |
= |
= = |
= |
||||||
{8,4} | t{8,4} |
r{8,4} | 2t{8,4}=t{4,8} | 2r{8,4}={4,8} | rr{8,4} | tr{8,4} | |||||
Uniform duals | |||||||||||
V84 | V4.16.16 | V(4.8)2 | V8.8.8 | V48 | V4.4.4.8 | V4.8.16 | |||||
Alternations | |||||||||||
[1+,8,4] (*444) |
[8+,4] (8*2) |
[8,1+,4] (*4222) |
[8,4+] (4*4) |
[8,4,1+] (*882) |
[(8,4,2+)] (2*42) |
[8,4]+ (842) | |||||
= |
= |
= |
= |
= |
= |
||||||
h{8,4} | s{8,4} | hr{8,4} | s{4,8} | h{4,8} | hrr{8,4} | sr{8,4} | |||||
Alternation duals | |||||||||||
V(4.4)4 | V3.(3.8)2 | V(4.4.4)2 | V(3.4)3 | V88 | V4.44 | V3.3.4.3.8 |
4n2 symmetry mutations of snub tilings: 3.3.n.3.n | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry 4n2 |
Spherical | Euclidean | Compact hyperbolic | Paracompact | |||||||
222 | 322 | 442 | 552 | 662 | 772 | 882 | ∞∞2 | ||||
Snub figures |
|||||||||||
Config. | 3.3.2.3.2 | 3.3.3.3.3 | 3.3.4.3.4 | 3.3.5.3.5 | 3.3.6.3.6 | 3.3.7.3.7 | 3.3.8.3.8 | 3.3.∞.3.∞ | |||
Gyro figures |
|||||||||||
Config. | V3.3.2.3.2 | V3.3.3.3.3 | V3.3.4.3.4 | V3.3.5.3.5 | V3.3.6.3.6 | V3.3.7.3.7 | V3.3.8.3.8 | V3.3.∞.3.∞ |
References
[edit]- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
See also
[edit]Wikimedia Commons has media related to Uniform tiling 3-3-8-3-8.