Spiroplasma
Spiroplasma | |
---|---|
![]() | |
Corn stunt Spiroplasma in phloem cells. Thick section (0.4 micrometers) observed in a TEM. Magnified 75,000X. | |
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | Spiroplasmataceae Skrypal 1974 ex Skrypal 1983
|
Genus: | Spiroplasma Saglio et al. 1973
|
Type species | |
Spiroplasma citri Saglio et al. 1973
| |
Species[1] | |
See text |
Spiroplasma is a genus of Mollicutes, a group of small bacteria without cell walls. Spiroplasma shares the simple metabolism, parasitic lifestyle, fried-egg colony morphology and small genome of other Mollicutes, but has a distinctive helical morphology, unlike Mycoplasma. It has a spiral shape and moves in a corkscrew motion. Many Spiroplasma are found either in the gut or haemolymph of insects where they can act to manipulate host reproduction, or defend the host as endosymbionts. Spiroplasma are also disease-causing agents in the phloem of plants. Spiroplasmas are fastidious organisms, which require a rich culture medium. Typically they grow well at 30 °C, but not at 37 °C. A few species, notably Spiroplasma mirum, grow well at 37 °C (human body temperature), and cause cataracts and neurological damage in suckling mice.
The best studied species of spiroplasmas are Spiroplasma poulsonii, a reproductive manipulator and defensive insect symbiont, Spiroplasma citri, the causative agent of citrus stubborn disease, and Spiroplasma kunkelii, the causative agent of corn stunt disease.
Genus structure
[edit]Spiroplasma as currently circumscribeed is not monophyletic and consists of four separate clades (see §Phylogeny below):
- Spiroplasma sensu stricto consists of the large clade around S. citri. This clade has been subdivided into mirum, chrysopicola, citri, and poulsonii clades, which can be readily distinguished in the phylogenetic trees provided below.
- The ixodetis clade contains two species.
- The apis clade contains 24 species in the broadest view.
- "Candidatus Spiroplasma holothuricola" was named in 2018, creating the fourth clade due to its position on the phylogenetic tree. It was found in an unnamed sea cucumber species close to Zygothuria oxysclera.[2]
In arthropods
[edit]Insect symbioses
[edit]Many Spiroplasma strains are vertically transmitted endosymbionts of Drosophila species, with a variety of host-altering mechanisms similar to Wolbachia. These strains are from the Spiroplasma poulsonii clade, and can have important effects on host fitness. The S. poulsonii strain of Drosophila neotestacea protects its host against parasitic nematodes. This interaction is an example of defensive symbiosis, where the fitness of the symbiont is intricately tied to the fitness of the host. The D. neotestacea S. poulsonii also defends its fly host from infestation by parasitic wasps.[3][4] The mechanism through which S. poulsonii attacks nematodes and parasitic wasps relies on the presence of toxins called ribosome-inactivating proteins (RIPs), similar to Sarcin or Ricin.[5] These toxins depurinate a conserved adenine site in eukaryotic 28S ribosomal RNA called the Sarcin-Ricin loop by cleaving the N-glycosidic bond between the rRNA backbone and the adenine.[5] Spiroplasma associations highlight a growing movement to consider heritable symbionts as important drivers in patterns of evolution.[6][7] Protection against wasp attack can be thermally sensitive, ablated at lower environmental temperatures.[8][9]
The S. poulsonii strain of Drosophila melanogaster can also attack parasitoid wasps, but is not regarded as a primarily defensive symbiont. This is because this strain called MSRO kills D. melanogaster eggs fertilized by Y-bearing sperm.[10] This mode of reproductive manipulation benefits the symbiont as the female fly has a greater reproductive output than males. Work by Veneti and colleagues demonstrated that male-killing was ablated by loss of function of any gene in the dosage compensation complex (DCC), leading to the hypothesis that the target of male-killing was the single X chromosome of males, and enabled by the DCC binding to this chromosome.[11] Work in D. nebulosa demonstrated male death was associated with widespread apoptosis in male embryos during mid/late embryogenesis.[12] The genetic basis of this male-killing was discovered in 2018, solving a decades-old mystery of how the bacteria targeted male-specific cells.[13] In an interview with the Global Health Institute, Dr. Toshiyuki Harumoto said this discovery is the first example of a bacterial effector protein that affects host cellular machinery in a sex-specific manner, and the first endosymbiont factor identified to explain the cause of male-killing. Thus it should have a big impact on the fields of symbiosis, sex determination, and evolution.[14]
Beyond Drosophila, Spiroplasma sensu stricto and that of the ixodetis clade are also found in many insects and arthropods, including ticks, spiders, bees, ants, beetles, and butterflies:
![]() |
Species or Clade | Host | Notes | |
---|---|---|---|
S. ixodetis | ticks,[15] ladybugs (Adalia bipunctata, Anisosticta novemdecimpunctata, Harmonia axyridis), Danaus chrysippus (plain dragon butterfly),[16] and Acyrthosiphum pisum (pea aphid)[17] | Male-killing in Adalia bipunctata[18] and Harmonia axyridis.[19][20] Male-killing has led to speciation in the plain dragon butterfly.[21] | |
S. platyhelix | dragonfly (Pachydiplax longipennis)[22] | ||
S. mirum | Haemaphysalis leporispalustris rabbit tick,[23] Atrichopogon biting-midges[24][25] | ||
S. chrysopicola | Maryland deerfly (Chrysops sp.)[26] | ||
S. poulsonii | Drosophila willistoni group[16] | ||
Unnamed, in citri clade | Mallada desjadinisi lacewing butterfly, several species of Myrmica ants[1] | Male-killing in the butterfly.[27] | |
S. meliferum | Apis mellifera (honey bee) | ||
S. alleghenense | Scorpion fly (Panorpa helena)[28] | ||
S. apis | Apis mellifera (honey bee)[29] | ||
S. gladiatoris, S. helicoides, S. tabanidicola | Various Tabanus horseflies[26] |
Crustacean diseases
[edit]Crustaceans are an economically important group of arthropods.[30]
- An epidemic of tremor disease in the Chinese mitten crab was traced to a new species which has since been named Spiroplasma eriocheiris.
- S. eriocheiris also causes disease in Procambarus clarkii crayfish.[31]
- S. penaei causes up to 90% mortality in whiteleg shrimps in Colombia.
In plants
[edit]Plant diseases
[edit]Spiroplasma citri is the causative agent of Citrus stubborn disease, a plant disease affecting species in the genus Citrus.[32] It infects the phloem of the affected plant, causing fruit deformities.
Spiroplasma kunkelii is also referred to as Corn Stunt Spiroplasma as it is the causative agent of Corn stunt disease, a disease of corn and other grasses that stunts plant growth. Spiroplasma kunkelii represents a major economic risk, as corn production in the United States is an industry worth over $50 billion.[33]
Both Spiroplasma citri and Spiroplasma kunkelii are transmitted by leafhoppers.[34][35] Both plant pathogens belong to the citri clade. Another member of the clade that infects plants is S. phoeniceum, which causes periwinkle yellowing disease. The rest of the clade infects arthopods.[27]
Plant symbiosis
[edit]Spiroplasma floricola lives on the surface of the flowers of the tulip tree Liriodendron tulipifera.[30]
In vertebrates
[edit]One member of this species, Spiroplasma mirum, readily infects newborn rodents but not adult rodents.[36]
In humans
[edit]In 1997, an unnamed species closest to S. taiwanense was found in a newborn with unilateral cataract and anterior uveitis. This is the first known human infection.[37]
In 2014, S. turonicum caused a systemic infection in an immunocompromised individual with hypogammaglobulinemia and rheumatoid arthritis, the latter being treated with biologics. This was the first human systemic infection reported.[38]
In 2022, an unnamed species closest to S. eriocheiris caused a bloodstream and lung infection in a man who underwent surgery for aortic dissection. The genome has been sequenced.[39] GTDB calls this species Spiroplasma sp040940205, a placeholder name based on the GenBank/RefSeq genome assembly identifier.[40]
Transmissible spongiform encephalopathy theory
[edit]There is some disputed evidence for the role of spiroplasmas in the etiology of transmissible spongiform encephalopathies (TSEs), due primarily to the work of Frank Bastian, summarized below. Other researchers have failed to replicate this work, while the prion model for TSEs has gained very wide acceptance.[41] A 2006 study appears to refute the role of spiroplasmas in the best small animal scrapie model (hamsters).[42] Bastian et al. (2007) have responded to this challenge with the isolation of a spiroplasma species from scrapie-infected tissue, grown it in cell-free culture, and demonstrated its infectivity in deer. Another experiment in the same study isolates S. mirum from ticks and demonstrates its infectivity in deer. The study also claims S. mirum was previously demonstrated to cause TSE in rodents.[43] A 2011 study fails to cause TSE in raccoons with S. mirum, but succeeded with sick raccoon brain tissue.[44]
In 2014, yet another argument for this theory was put forward by Bastian, this time pointing to the production of alpha-synuclein in mammalian cells cultured with Spiroplasma and biofilm formation. The same article also repeats the previous claims about other supportive evidence.[45] No specific rebuttal has been found among PubMed articles that cite this paper. Only one of the 8 citations dealt with any form of TSE as the main topic.
Genetics and Molecular evolution
[edit]Spiroplasma, like other mollicutes, have a distinct genetic code, with two rather than three stop codons.[46] Molecular evolution studies, using Spiroplasma passaged vertically in Drosophila, indicate a very fast rate of molecular evolution.[47] Spiroplasma genomes are commonly extremely AT rich, can contain a variety of prophage (viral) elements, and also plasmids.CRISPR defences are found in some members of the genus.[48] Genome sizes are generally between 0.7 and 2.2 Mb.
Phylogeny
[edit]The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[49] and National Center for Biotechnology Information (NCBI).[50]
16S rRNA based LTP_10_2024[51][52][53] | 120 marker proteins based GTDB 09-RS220[54][55][56] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
Notes on individual species:
- Spiroplasma mirum has also been called Spiroplasma mira, an attempt at correcting the grammatical gender of the specific epithet to match that of the genus name. However, mirum is of neuter gender and requires no correction. In addition, LPSN (and the LoRN) and GTDB treat S. atrichopogonis as a heterotypic synonym.[57]
- S. insolitum, S. phoeniceum, S. melliferum, and S. diminutum are also gramatically correct and in no need of correction per LPSN.
See also
[edit]- Mycoplasma, a similar organism causing disease in animals including humans and linked to autoimmune diseases like rheumatoid arthritis.[58]
- Phytoplasma, another similar organism causing disease in plants.
- Prion
- Virino
- List of bacterial orders
- List of bacteria genera
References
[edit]- ^ a b Ballinger, Matthew J.; Moore, Logan D.; Perlman, Steve J.; Stabb, Eric V. (31 January 2018). "Evolution and Diversity of Inherited Spiroplasma Symbionts in Myrmica Ants". Applied and Environmental Microbiology. 84 (4). Bibcode:2018ApEnM..84E2299B. doi:10.1128/AEM.02299-17. PMC 5795062. PMID 29196290.
- ^ He, LS; Zhang, PW; Huang, JM; Zhu, FC; Danchin, A; Wang, Y (1 January 2018). "The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian". Applied and environmental microbiology. 84 (1). doi:10.1128/AEM.01965-17. PMID 29054873.
- ^ Jaenike, J.; Unckless, R.; Cockburn, S N.; Boelio, L. M.; Perlman, S. J. (8 July 2010). "Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont". Science. 329 (5988): 212–215. Bibcode:2010Sci...329..212J. doi:10.1126/science.1188235. PMID 20616278. S2CID 206526012.
- ^ Haselkorn, Tamara S.; Jaenike, John (July 2015). "Macroevolutionary persistence of heritable endosymbionts: acquisition, retention and expression of adaptive phenotypes in". Molecular Ecology. 24 (14): 3752–3765. doi:10.1111/mec.13261. PMID 26053523. S2CID 206182327.
- ^ a b Ballinger, Matthew J.; Perlman, Steve J.; Hurst, Greg (6 July 2017). "Generality of toxins in defensive symbiosis: Ribosome-inactivating proteins and defense against parasitic wasps in Drosophila". PLOS Pathogens. 13 (7): e1006431. doi:10.1371/journal.ppat.1006431. PMC 5500355. PMID 28683136.
- ^ Jaenike, John; Stahlhut, Julie K.; Boelio, Lisa M.; Uncless, Robert L. (January 2010). "Association between Wolbachia and Spiroplasma within Drosophila neotestacea: an emerging symbiotic mutualism?". Molecular Ecology. 19 (2): 414–425. Bibcode:2010MolEc..19..414J. doi:10.1111/j.1365-294X.2009.04448.x. PMID 20002580. S2CID 46063874.
- ^ Koch, Hauke; Schmid-Hempel, Paul (29 November 2011). "Socially transmitted gut microbiota protect bumble bees against an intestinal parasite". Proceedings of the National Academy of Sciences of the United States of America. 108 (48): 19288–19292. Bibcode:2011PNAS..10819288K. doi:10.1073/pnas.1110474108. PMC 3228419. PMID 22084077.
- ^ Corbin, Chris; Jones, Jordan E.; Chrostek, Ewa; Fenton, Andy; Hurst, Gregory D. D. (2021). "Thermal sensitivity of the Spiroplasma–Drosophila hydei protective symbiosis: The best of climes, the worst of climes". Molecular Ecology. 30 (5): 1336–1344. Bibcode:2021MolEc..30.1336C. doi:10.1111/mec.15799. ISSN 1365-294X. PMID 33428287.
- ^ Jones, Jordan E.; Hurst, Gregory D. D. (2023). "History matters: Thermal environment before but not during wasp attack determines the efficiency of symbiont-mediated protection". Molecular Ecology. 32 (12): 3340–3351. Bibcode:2023MolEc..32.3340J. doi:10.1111/mec.16935. ISSN 1365-294X.
- ^ Montenegro, H.; Solferini, V. N.; Klaczko, L. B.; Hurst, G. D. D. (2005). "Male-killing Spiroplasma naturally infecting Drosophila melanogaster". Insect Molecular Biology. 14 (3): 281–287. doi:10.1111/j.1365-2583.2005.00558.x. ISSN 1365-2583. PMID 15926897.
- ^ Veneti, Zoe; Bentley, Joanna K.; Koana, Takao; Braig, Henk R.; Hurst, Gregory D. D. (2005-03-04). "A Functional Dosage Compensation Complex Required for Male Killing in Drosophila". Science. 307 (5714): 1461–1463. Bibcode:2005Sci...307.1461V. doi:10.1126/science.1107182. PMID 15746426.
- ^ Bentley, Joanna K.; Veneti, Zoe; Heraty, Joseph; Hurst, Gregory DD (2007-03-15). "The pathology of embryo death caused by the male-killing Spiroplasma bacterium in Drosophila nebulosa". BMC Biology. 5 (1): 9. doi:10.1186/1741-7007-5-9. ISSN 1741-7007. PMC 1832177. PMID 17362512.
- ^ Harumoto, Toshiyuki; Lemaitre, Bruno (May 2018). "Male-killing toxin in a bacterial symbiont of Drosophila". Nature. 557 (7704): 252–255. Bibcode:2018Natur.557..252H. doi:10.1038/s41586-018-0086-2. PMC 5969570. PMID 29720654.
- ^ Papageorgiou, Nik (5 July 2018). "Mystery solved: The bacterial protein that kills male fruit flies".
- ^ Binetruy, Florian; Bailly, Xavier; Chevillon, Christine; Martin, Oliver Y.; Bernasconi, Marco V.; Duron, Olivier (1 April 2019). "Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods". Ticks and Tick-borne Diseases. 10 (3): 575–584. doi:10.1016/j.ttbdis.2019.02.001. PMID 30744948.
- ^ a b Duron, Olivier; Bouchon, Didier; Boutin, Sébastien; Bellamy, Lawrence; Zhou, Liqin; Engelstädter, Jan; Hurst, Gregory D. (24 June 2008). "The diversity of reproductive parasites among arthropods: Wolbachiado not walk alone". BMC Biology. 6 (1): 27. doi:10.1186/1741-7007-6-27. PMC 2492848. PMID 18577218.
- ^ Fukatsu, T; Tsuchida, T; Nikoh, N; Koga, R (March 2001). "Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera)". Applied and environmental microbiology. 67 (3): 1284–91. doi:10.1128/AEM.67.3.1284-1291.2001. PMID 11229923.
- ^ Hurst, G. D. D.; von der Schulenburg, J. H. Graf; Majerus, T. M. O.; Bertrand, D.; Zakharov, I. A.; Baungaard, J.; Völkl, W.; Stouthamer, R.; Majerus, M. E. N. (1999). "Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria". Insect Molecular Biology. 8 (1): 133–139. doi:10.1046/j.1365-2583.1999.810133.x. ISSN 1365-2583. PMID 9927182.
- ^ Tsushima, Yusuke; Nakamura, Kayo; Tagami, Yohsuke; Miura, Kazuki (April 2015). "Mating rates and the prevalence of male-killing Spiroplasma in Harmonia axyridis (Coleoptera: Coccinellidae)". Entomological Science. 18 (2): 217–220. doi:10.1111/ens.12113. S2CID 83582284. – Note: does not specifically identify which Spiroplasma
- ^ Majerus, T. M. O.; Von Der Schulenburg, J. H. Graf; Majerus, M. E. N.; Hurst, G. D. D. (November 1999). "Molecular identification of a male-killing agent in the ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae)". Insect Molecular Biology. 8 (4): 551–555. doi:10.1046/j.1365-2583.1999.00151.x. ISSN 0962-1075. PMID 10634973.
- ^ Jiggins, F. M.; Hurst, G. D. D.; Jiggins, C. D.; Schulenburg, J. H. G. v d; Majerus, M. E. N. (2000). "The butterfly Danaus chrysippus is infected by a male-killing Spiroplasma bacterium". Parasitology. 120 (5): 439–446. doi:10.1017/S0031182099005867. PMID 10840973. S2CID 34436795.
- ^ Green, EA; Klassen, JL (19 November 2020). "Draft Genome Sequence of Spiroplasma platyhelix ATCC 51748, Isolated from a Dragonfly". Microbiology resource announcements. 9 (47). doi:10.1128/MRA.00422-20. PMID 33214290.
- ^ Tully, J. G.; Whitcomb, R. F.; Rose, D. L.; Bove, J. M. (1 January 1982). "Spiroplasma mirum, a New Species from the Rabbit Tick (Haemaphysalis leporispalustris)". International Journal of Systematic Bacteriology. 32 (1): 92–100. doi:10.1099/00207713-32-1-92.
- ^ Koerber, RT; Gasparich, GE; Frana, MF; Grogan, WL (January 2005). "Spiroplasma atrichopogonis sp. nov., from a ceratopogonid biting midge". International journal of systematic and evolutionary microbiology. 55 (Pt 1): 289–292. doi:10.1099/ijs.0.02465-0. PMID 15653889.
- ^ Bhargava, Vatsal; Lahon, Darshana; Gupta, Sonal; Kaur, Jasvinder; Lata, Pushp (29 November 2024). "Genome-based reclassification of Spiroplasma atrichopogonis Koerber et al. 2005 as a later heterotypic synonym of Spiroplasma mirum Tully et al. 1982". International Journal of Systematic and Evolutionary Microbiology. 74 (11). doi:10.1099/ijsem.0.006589.
- ^ a b Whitcomb, Robert F.; French, Frank E.; Tully, Joseph G.; Gasparich, Gail E.; Rose, David L.; Carle, Patricia; Bove, Joseph M.; Henegar, Roberta B.; Konai, Meghnad; Hackett, Kevin J.; Adams, Jean R.; Clark, Truman B.; Williamson, David L. (1 July 1997). "Spiroplasma chrysopicola sp. nov., Spiroplasma gladiatoris sp. nov., Spiroplasma helicoides sp. nov., and Spiroplasma tabanidicola sp. nov., from Tabanid (Diptera: Tabanidae) Flies". International Journal of Systematic and Evolutionary Microbiology. 47 (3): 713–719. doi:10.1099/00207713-47-3-713.
- ^ a b Hayashi, Masayuki; Watanabe, Masaya; Yukuhiro, Fumiko; Nomura, Masashi; Kageyama, Daisuke (2016-06-15). Bourtzis, Kostas (ed.). "A Nightmare for Males? A Maternally Transmitted Male-Killing Bacterium and Strong Female Bias in a Green Lacewing Population". PLOS ONE. 11 (6): e0155794. Bibcode:2016PLoSO..1155794H. doi:10.1371/journal.pone.0155794. ISSN 1932-6203. PMC 4909225. PMID 27304213.
- ^ Chou, L; Lee, TY; Tsai, YM; Kuo, CH (25 April 2019). "Complete Genome Sequence of Spiroplasma alleghenense PLHS-1(T) (ATCC 51752), a Bacterium Isolated from Scorpion Fly (Panorpa helena)". Microbiology resource announcements. 8 (17). doi:10.1128/MRA.00317-19. PMID 31023800.
- ^ Mouches, C; Bové, JM; Tully, JG; Rose, DL; McCoy, RE; Carle-Junca, P; Garnier, M; Saillard, C (May 1983). "Spiroplasma apis, a new species from the honey-bee Apis mellifera". Annales de microbiologie. 134A (3): 383–97. PMID 6195951.
- ^ a b Cisak, Ewa; Wójcik-Fatla, Angelina; Zając, Violetta; Sawczyn, Anna; Sroka, Jacek; Dutkiewicz, Jacek (13 December 2015). "Spiroplasma – an emerging arthropod-borne pathogen?". Annals of Agricultural and Environmental Medicine. 22 (4): 589–593. doi:10.5604/12321966.1185758.
- ^ Ou, J; Wang, X; Luan, X; Yu, S; Chen, H; Dong, H; Zhang, B; Xu, Z; Liu, Y; Zhao, W (November 2024). "Comprehensive analysis of the mRNA and miRNA transcriptome implicated in the immune response of Procambarus clarkii to Spiroplasma eriocheiris". Microbial pathogenesis. 196: 106928. doi:10.1016/j.micpath.2024.106928. PMID 39270754.
- ^ Yokomi, Raymond K.; Mello, Alexandre F. S.; Saponari, Maria; Fletcher, Jacqueline (February 2008). "Polymerase Chain Reaction-Based Detection of Spiroplasma citri Associated with Citrus Stubborn Disease". Plant Disease. 92 (2): 253–260. doi:10.1094/PDIS-92-2-0253. PMID 30769379.
- ^ "Use of Spectral Vegetation Indices for Detection of European Corn Borer Infestation in Iowa Corn Plots | Science Inventory | US EPA". Cfpub.epa.gov. Retrieved 2019-02-12.
- ^ Bové, Joseph M.; Renaudin, Joël; Saillard, Colette; Foissac, Xavier; Garnier, Monique (2003). "Spiroplasma citri, a Plant Pathogenic Mollicute: Relationships with Its Two Hosts, the Plant and the Leafhopper Vector". Annual Review of Phytopathology. 41 (1): 483–500. doi:10.1146/annurev.phyto.41.052102.104034. ISSN 0066-4286. PMID 12730387.
- ^ Özbek, Elvan; Miller, Sally A; Meulia, Tea; Hogenhout, Saskia A (2003-03-01). "Infection and replication sites of Spiroplasma kunkelii (Class: Mollicutes) in midgut and Malpighian tubules of the leafhopper Dalbulus maidis". Journal of Invertebrate Pathology. 82 (3): 167–175. Bibcode:2003JInvP..82..167O. doi:10.1016/S0022-2011(03)00031-4. ISSN 0022-2011. PMID 12676553.
- ^ Tully, J. G.; Whitcomb, R. F.; Rose, D. L.; Bove, J. M. (1 January 1982). "Spiroplasma mirum, a New Species from the Rabbit Tick (Haemaphysalis leporispalustris)". International Journal of Systematic Bacteriology. 32 (1): 92–100. doi:10.1099/00207713-32-1-92.
- ^ Lorenz, Birgit; Schroeder, Josef; Reischl, Udo (May 2002). "First evidence of an endogenous Spiroplasma sp. infection in humans manifesting as unilateral cataract associated with anterior uveitis in a premature baby". Graefe's Archive for Clinical and Experimental Ophthalmology. 240 (5): 348–353. doi:10.1007/s00417-002-0453-3.
- ^ Aquilino, A; Masiá, M; López, P; Galiana, AJ; Tovar, J; Andrés, M; Gutiérrez, F (February 2015). "First human systemic infection caused by Spiroplasma". Journal of clinical microbiology. 53 (2): 719–21. doi:10.1128/JCM.02841-14. PMID 25428150.
- ^ Xiu, N; Yang, C; Chen, X; Long, J; Qu, P (January 2024). "Rare Spiroplasma Bloodstream Infection in Patient after Surgery, China, 2022". Emerging infectious diseases. 30 (1): 187–189. doi:10.3201/eid3001.230858. PMC 10756377. PMID 38147505.
- ^ "GTDB - GCF_040940205.1 Spiroplasma sp040940205". gtdb.ecogenomic.org.
- ^ Leach, R.H.; Matthews, W.B.; Will, R. (June 1983). "Creutzfeldt-Jakob disease". Journal of the Neurological Sciences. 59 (3): 349–353. doi:10.1016/0022-510x(83)90020-5. PMID 6348215. S2CID 3558955.
- ^ Alexeeva, I.; Elliott, E. J.; Rollins, S.; Gasparich, G. E.; Lazar, J.; Rohwer, R. G. (3 January 2006). "Absence of Spiroplasma or Other Bacterial 16S rRNA Genes in Brain Tissue of Hamsters with Scrapie". Journal of Clinical Microbiology. 44 (1): 91–97. doi:10.1128/JCM.44.1.91-97.2006. PMC 1351941. PMID 16390954.
- ^ Bastian, Frank O.; Sanders, Dearl E.; Forbes, Will A.; Hagius, Sue D.; Walker, Joel V.; Henk, William G.; Enright, Fred M.; Elzer, Philip H. (1 September 2007). "Spiroplasma spp. from transmissible spongiform encephalopathy brains or ticks induce spongiform encephalopathy in ruminants". Journal of Medical Microbiology. 56 (9): 1235–1242. doi:10.1099/jmm.0.47159-0. PMID 17761489.
- ^ Hamir, AN; Greenlee, JJ; Stanton, TB; Smith, JD; Doucette, S; Kunkle, RA; Stasko, JA; Richt, JA; Kehrli ME, Jr (January 2011). "Experimental inoculation of raccoons (Procyon lotor) with Spiroplasma mirum and transmissible mink encephalopathy (TME)". Canadian journal of veterinary research = Revue canadienne de recherche veterinaire. 75 (1): 18–24. PMID 21461191.
- ^ Bastian, Frank O. (February 2014). "The Case for Involvement of Spiroplasma in the Pathogenesis of Transmissible Spongiform Encephalopathies:". Journal of Neuropathology & Experimental Neurology. 73 (2): 104–114. doi:10.1097/NEN.0000000000000033.
- ^ Renbaum, Paul; Abrahamove, Dan; Fainsod, Abraham; Wilson, Geoffrey G.; Rottem, Shlomo; Razin, Aharon (1990-03-11). "Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1(M Sssl)". Nucleic Acids Research. 18 (5): 1145–1152. doi:10.1093/nar/18.5.1145. ISSN 0305-1048. PMC 330428. PMID 2181400.
- ^ Gerth, Michael; Martinez-Montoya, Humberto; Ramirez, Paulino; Masson, Florent; Griffin, Joanne S.; Aramayo, Rodolfo; Siozios, Stefanos; Lemaitre, Bruno; Mateos, Mariana; Hurst, Gregory D. D. (2021). "Rapid molecular evolution of Spiroplasma symbionts of Drosophila". Microbial Genomics. 7 (2): 000503. doi:10.1099/mgen.0.000503. ISSN 2057-5858. PMC 8208695. PMID 33591248.
- ^ Ipoutcha, Thomas; Tsarmpopoulos, Iason; Talenton, Vincent; Gaspin, Christine; Moisan, Annick; Walker, Caray A.; Brownlie, Joe; Blanchard, Alain; Thebault, Patricia; Sirand-Pugnet, Pascal (2019-11-21). "Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria (Mollicutes)". Frontiers in Microbiology. 10: 2701. doi:10.3389/fmicb.2019.02701. ISSN 1664-302X. PMC 6882279. PMID 31824468.
- ^ J.P. Euzéby. "Spiroplasma". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-09-09.
- ^ Sayers; et al. "Spiroplasma". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-09-09.
- ^ "The LTP". Retrieved 10 December 2024.
- ^ "LTP_all tree in newick format". Retrieved 10 December 2024.
- ^ "LTP_10_2024 Release Notes" (PDF). Retrieved 10 December 2024.
- ^ "GTDB release 09-RS220". Genome Taxonomy Database. Retrieved 10 May 2024.
- ^ "bac120_r220.sp_labels". Genome Taxonomy Database. Retrieved 10 May 2024.
- ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2024.
- ^ "Species: Spiroplasma mirum". lpsn.dsmz.de.
- ^ Ramírez, A. S.; Rosas, A.; Hernández-Beriain, J. A.; Orengo, J. C.; Saavedra, P.; de la Fe, C.; Fernández, A.; Poveda, J. B. (July 2005). "Relationship between rheumatoid arthritis and Mycoplasma pneumoniae: a case–control study". Rheumatology. 44 (7): 912–914. doi:10.1093/rheumatology/keh630. PMID 15814575.
External links
[edit]- Spiroplasma may cause Creutzfeldt–Jakob disease. An interview with a leading expert in infectious diseases: Frank O. Bastsian, MD.
- Spiroplasma & Transmissible Spongiform Encephalopathies, Ed Gehrman
- Spiroplasma Genome Projects from Genomes OnLine Database
- Jaenike, J.; Unckless, R.; Cockburn, S. N.; Boelio, L. M.; Perlman, S. J. (8 July 2010). "Adaptation via Symbiosis: Recent Spread of a Drosophila Defensive Symbiont". Science. 329 (5988): 212–215. Bibcode:2010Sci...329..212J. doi:10.1126/science.1188235. PMID 20616278. S2CID 206526012.