Jump to content

Talk:Coherent sheaf cohomology

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

"Coherent cohomology", "holomorphic Euler characteristic", and "Serre's vanishing theorem" redirect here. BTotaro (talk) 17:19, 20 May 2016 (UTC)[reply]

Todo

[edit]

This page should include several computations of sheaf cohomology. This should include

  • cohomology of projective space
  • cohomology of the module from the structure sheaf of a projective variety
  • hodge theory computations

This page should also describe applications. One is the fact that the sheaf cohomology modules can be used to construct examples of families of extensions parameterized by the affine line using the fact that we can just a morphism of into one of these vector spaces (since we can use the derived category interpretation). This shows that is not invariant since if our map contains and a non-zero point, we have a trivial and non-trivial extension of vector bundles, hence they are not isomorphic. — Preceding unsigned comment added by 128.138.65.203 (talk) 01:46, 10 October 2017 (UTC)[reply]

Here are some additional resources for computing cohomology:

For example, take a complete intersection surface of bidegree in . Then, using the Hodge theory notes there are short exact sequences on the degree hypersurface from the cotangent sequence

Then, using the cotangent sequence again we find

These give long exact sequences, which can then be used to compute the hodge numbers of this complete intersection hypersurface. The other two sequences to consider are

Notice that tensoring the euler sequence will show how to compute the cohomology of the first sequence.