Tameryraptor
Tameryraptor Temporal range: Late Cretaceous,
| |
---|---|
Photograph of the holotype before its destruction in 1944 | |
Skeletal reconstruction of the holotype with known material in white | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Dinosauria |
Clade: | Saurischia |
Clade: | Theropoda |
Clade: | †Carcharodontosauria |
Family: | †Carcharodontosauridae |
Genus: | †Tameryraptor Kellermann, Cuesta & Rauhut, 2025 |
Species: | †T. markgrafi
|
Binomial name | |
†Tameryraptor markgrafi Kellermann, Cuesta & Rauhut, 2025
|
Tameryraptor ("thief from the beloved land") is an extinct genus of large carcharodontosaurid theropod dinosaurs from the Late Cretaceous (Cenomanian age) Bahariya Formation of Egypt. The genus contains a single species, T. markgrafi, known from partial skull bones and vertebrae, and leg bones. The holotype specimen was historically assigned to the genus Carcharodontosaurus, and it was destroyed in a bombing during the Second World War in 1944. Tameryraptor is one of the only African carcharodontosaurids to preserve associated cranial and postcranial remains.
Discovery and naming
[edit]In early April 1914, theropod fossils were found in marls near Ain Gedid, Egypt by Austro-Hungarian paleontologist Richard Markgraf; he would stop collecting fossils upon the request of Ernst Stromer shortly after.[1] The sediments from this region derive from the Cenomanian-aged Bahariya Formation, one of many Cretaceous-aged sites of North Africa.[2][3][4] Markgraf extensively collected dinosaur skeletons in Bahariya for his employer, German paleontologist Ernst Stromer of the Paläontologisches Museum München (Bavarian State Collection of Paleontology). This Egyptian skeleton (SNSB-BSPG 1922 X 46) consisted of a partial skull, including much of the braincase, teeth, three cervical vertebrae and a caudal vertebra, a partial pelvis, a manual ungual, both femora, and the left fibula.[5]
Due to political tensions between the German Empire and then British-owned Egypt, this specimen took years to get to Germany. It was not until 1922 that the bones were transported to Munich where Stromer described them in 1931.[4] Stromer recognized that the teeth of this specimen matched the characteristic dentition of those described by Depéret and Savornin in 1925 for their new species "Megalosaurus" saharicus. He found it necessary to erect a new genus for this species, Carcharodontosaurus. World War II broke out in 1939, leading to SNSB-BSPG 1922 X 46 and other Bahariya material to be destroyed during a British bombing raid on Munich during the night of April 24/25, 1944.[6][7] An endocast was made that survived the war, making it the only remaining relic of the specimen.[3]
In 2025, Kellermann, Cuesta & Rauhut described Tameryraptor markgrafi as a new genus and species of carcharodontosaurid theropods based on these fossil remains. Since the fossil remains were destroyed, they established their description based on an archival photograph. The generic name, Tameryraptor, combines Ta-mery, an informal ancient Egyptian name for the country—meaning "beloved land"—with the Latin word "raptor", meaning "thief". The specific name, markgrafi, honors Richard Markgraf, the discoverer of the remains.[5]
Description
[edit]In 1931, Stromer estimated that the Tameryraptor holotype represented an individual similar in size to the tyrannosaurid Gorgosaurus,[4] which has been estimated at 8–9 metres (26–30 ft) in length.[8][9]
Skull and dentition
[edit]The skull Stromer described was incomplete and severely damaged, with the snout represented only by the nearly-complete left and right nasals and the damaged left maxilla. The middle parts of the nasals bear strong rugosities, similar to those of other carcharodontosaurids. However, they are characterized by a horn-like protrusion, measuring 3 cm (1.2 in) in height, which is not observed in any other taxon. The horn's prominence is accentuated by a depression behind the protrusion. The rear portion of the skull of Tameryraptor is represented by the parietals, frontals, part of the supraoccipital, and partial otoccipitals (bones relating to the ear). The maxillary teeth of Tameryraptor are more symmetrical and triangular than those of Carcharodontosaurus, similar to a tooth fragment from the Kem Kem Group and an isolated tooth that has been assigned to Mapusaurus. Like the teeth of other carcharodontosaurids, those of Tameryraptor bore horizontal enamel wrinkles.[5]
Postcranial skeleton
[edit]The Tameryraptor holotype was initially interpreted as one of the most complete postcranial specimens of Carcharodontosaurus. This specimen preserved three cervical vertebrae, which were weathered severely. One is the axis and the other two are articulated anterior cervicals that are larger than the axis. The cervical vertebrae, similar to the related Giganotosaurus, are topped by low neural spines joined with sturdy transverse processes which hung over the pleurocoels (shallow depressions on the sides of centra), which would contain pneumatic air sacs to lighten the vertebrae. The centra of these vertebrae are adorned by keels along their ventral sides. An anterior caudal vertebra was also known, which was platycoelous (flat anterior and posterior ends) and short. This caudal was incomplete, missing much of the neural spine, but had diapophyses that would conjugate with the chevrons. The sides of its centrum were pleurocoelus as well. A haemal arch was preserved in this individual as well.[4][5]
The pelvis was incomplete, containing both pubes and the left ischium. The ischium is uniquely pointed almost directly horizontally. The pubes were likely nearly 1 metre (3.3 ft) when fully preserved, with thin shafts that were transversely expanded at the anterior ends where they connected, creating a V-shape in anterior view. Both femora in addition to the left fibula were recovered, the former element being one of the largest recorded from a theropod at 1.26 metres (4.1 ft) in length. Its femora lacked strong curvature. The greater trochanter is small but has a notable protrusion, which would attach to the m. caudofemoralis longus muscle of the tail. Its fibula was only 88 centimetres (35 in) long, around 1/3rd the length of the femora. The anterior end was triangular in lateral view with bulging condyles whereas the posterior end is rounded.[4][5]
Classification
[edit]In their phylogenetic analyses, Kellermann, Cuesta & Rauhut (2025) recovered Tameryraptor as a non-carcharodontosaurine member of the Carcharodontosauridae. Their analyses found support for a sister taxon relationship of carcharodontosaurids and metriacanthosaurids, which the authors named as a new clade, Carcharodontosauriformes. The results of their analysis using merged OTUs (operational taxonomic units) is displayed in the cladogram below:[5]
Carcharodontosauriformes |
| ||||||||||||||||||||||||||||||||||||||||||
Paleoecology
[edit]North Africa during the Cenomanian stage of the Late Cretaceous bordered the Tethys Sea, which transformed the region into a mangrove-dominated coastal environment filled with vast tidal flats and waterways.[10] Tameryraptor lived in the Bahariya Formation, then a wetland environment, alongside the coeval Spinosaurus which is also known from the Kem Kem beds. The faunal composition of both the Bahariya Formation and the Kem Kem beds were thought to be similar in the past, but the describers of Tameryraptor suggested that such superficial comparisons require further examination.[5] Contemporary abelisaurid dinosaurs from the Bahariya Formation were also terrestrial carnivores, preying on other terrestrial fauna.[11] Some sauropods are also known from the same formation such as Paralititan and Aegyptosaurus.[12]
References
[edit]- ^ Nothdurft, W.; Smith, J.; Lamanna, M.; Lacovara, K.; Poole, J.; Smith, J. (2002). The Lost Dinosaurs of Egypt. New York: Random House. pp. 133. ISBN 9780375507953.
- ^ Sereno, Paul C.; Dutheil, Didier B.; Iarochene, M.; Larsson, Hans C. E.; Lyon, Gabrielle H.; Magwene, Paul M.; Sidor, Christian A.; Varricchio, David J.; Wilson, Jeffrey A. (1996). "Predatory Dinosaurs from the Sahara and Late Cretaceous Faunal Differentiation" (PDF). Science. 272 (5264): 986–991. Bibcode:1996Sci...272..986S. doi:10.1126/science.272.5264.986. PMID 8662584. S2CID 39658297. Archived (PDF) from the original on 2024-12-04. Retrieved 2025-01-14.
- ^ a b Ibrahim, Nizar; Sereno, Paul C.; Varricchio, David J.; Martill, David M.; Dutheil, Didier B.; Unwin, David M.; Baidder, Lahssen; Larsson, Hans C. E.; Zouhri, Samir; Kaoukaya, Abdelhadi (2020). "Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco". ZooKeys (928): 1–216. Bibcode:2020ZooK..928....1I. doi:10.3897/zookeys.928.47517. PMC 7188693. PMID 32362741.
- ^ a b c d e Stromer, Ernst (1931). "Ergebnisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. II. Wirbeltier-Reste der Baharîjestufe (unterstes Cenoman). 10. Ein Skelett-Rest von Carcharodontosaurus nov. gen" (PDF). Abhandlungen der Bayerischen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Abteilung. Neue Folge (in German). 9: 1–23.
- ^ a b c d e f g Kellermann, Maximilian; Cuesta, Elena; Rauhut, Oliver W. M. (2025-01-14). "Re-evaluation of the Bahariya Formation carcharodontosaurid (Dinosauria: Theropoda) and its implications for allosauroid phylogeny". PLOS One. 20 (1): e0311096. doi:10.1371/journal.pone.0311096. ISSN 1932-6203. PMC 11731741. PMID 39808629.
- ^ Smith, Joshua B.; Lamanna, Matthew C.; Mayr, Helmut; Lacovara, Kenneth J. (2006). "New information regarding the holotype of Spinosaurus aegyptiacus Stromer, 1915". Journal of Paleontology. 80 (2): 400–406. doi:10.1666/0022-3360(2006)080[0400:NIRTHO]2.0.CO;2. S2CID 130989487.
- ^ "Nothdurft, William; Smith, Josh (2002). The Lost Dinosaurs of Egypt. New York: Random House Publishing Group. ISBN 978-1-58836-117-2.
- ^ Paul, Gregory S. (2016). The Princeton Field Guide to Dinosaurs. Princeton University Press. pp. 103–104. ISBN 978-1-78684-190-2. OCLC 985402380.
- ^ Russell, Dale A. (1970). "Tyrannosaurs from the Late Cretaceous of western Canada". National Museum of Natural Sciences Publications in Paleontology. 1: 1–34.
- ^ Wanas, Hamdalla A.; Assal, Ehab M. (March 2021). "Provenance, tectonic setting and source area-paleoweathering of sandstones of the Bahariya Formation in the Bahariya Oasis, Egypt: An implication to paleoclimate and paleogeography of the southern Neo-Tethys region during Early Cenomanian". Sedimentary Geology. 413: 105822. Bibcode:2021SedG..41305822W. doi:10.1016/j.sedgeo.2020.105822.
- ^ Salem, Belal S.; Lamanna, Matthew C.; O'Connor, Patrick M.; El-Qot, Gamal M.; Shaker, Fatma; Thabet, Wael A.; El-Sayed, Sanaa; Sallam, Hesham M. (2022). "First definitive record of Abelisauridae (Theropoda: Ceratosauria) from the Cretaceous Bahariya Formation, Bahariya Oasis, Western Desert of Egypt". Royal Society Open Science. 9 (6): 220106. Bibcode:2022RSOS....920106S. doi:10.1098/rsos.220106. PMC 9174736. PMID 35706658.
- ^ Smith, Joshua B.; Lamanna, Matthew C.; Lacovara, Kenneth J.; Dodson, Peter; Smith, Jennifer R.; Poole, Jason C.; Giegengack, Robert; Attia, Yousry (2001). "A Giant Sauropod Dinosaur from an Upper Cretaceous Mangrove Deposit in Egypt" (PDF). Science. 292 (5522): 1704–1706. Bibcode:2001Sci...292.1704S. doi:10.1126/science.1060561. PMID 11387472. S2CID 33454060. Archived (PDF) from the original on 2023-07-19. Retrieved 2025-01-14.