User:Reformbenediktiner
Head of my page
[edit]My name is Lion Emil Jann Fiedler and I live in Bamberg in Germany.
This is my German Wikipedia page:
https://de.wikipedia.org/wiki/Benutzer:Reformbenediktiner
My pseudonym on YouTube is Emil Jann Brahmeyer:
https://www.youtube.com/@emiljannbrahmeyer
From Principal quintics to Bring Jerrard quintics
[edit]Given Principal equation:
x^5 - u*x^2 + v*x - w = 0
Equation system for the initial clues on the A and B unknowns:
4*v*A - 3*u*B = 5*w
3*u^2*A^2 - 3*u*v*A + 25*w*A*B - 10*v*B^2 = 5*u*w - 2*v^2
Clue for the D unknown:
D = 4/5*v - 3/5*u*A
Clue for the C unknown:
u*C^3 + (5*w*A - 4*v*B + 3*u^2)*C^2 + (u*v*A^2 + 6*u*w*A + 5*w*B^2 - 8*u*v*B + 3*u^3 + v*w)*C + u^3*A^3 + v*w*A^3 - 2*u^2*B^3 + 2*u*v*A*B^2 - 2*u^2*A^2*D + 10*D^3 - 4*u^2*v*A^2 + v*w*A*B + 3*u*v*A*D + 2*u^2*w*A + 2*u^2*v*B - v^2*D + u^4 - 4*v^3 + 10*u*v*w = 0
Constructing the coefficients of the broken rational transformation key:
G = (-v*A^3 - A*B*D + w*A^2 + 2*v*A*B - A*C^2 - u*A*C + B^2*C - w*B + C*D - v*C + u*D - u*v)/(A^2*D - 2*A*B*C + B^3 + u*A^3 - 3*u*A*B - v*A^2 - B*D + C^2 + v*B + 2*u*C + u^2)
H = (A^3*w - 2*A*B*w - A*C*D - A*D*u + B^2*D + C*w + u*w)/(A^2*D - 2*A*B*C + B^3 + u*A^3 - 3*u*A*B - v*A^2 - B*D + C^2 + v*B + 2*u*C + u^2)
K = (-A*B+C+u)/(A^2-B)
L = (B^2-A*C-u*A)/(A^2-B)
Transformation key:
z = (x^2 + G*x + H)/(x^2 + K*x + L)
First equation:
((4*G*K^3*L + 12*G*K*L^2 + H*K^4 + 12*H*K^2*L + 6*H*L^2 + 6*K^2*L^2 + 4*L^3) + (6*G*K^2 + 4*G*L + 4*H*K + 4*K^3 + 12*K*L)*u - (4*G*K + H + 6*K^2 + 4*L)*v + (G + 4*K)*w + u^2)*M + + (-(5*K^4*L + 30*K^2*L^2 + 10*L^3) - (10*K^3 + 20*K*L)*u + (10*K^2 + 5*L)*v - 5*K*w - u^2)*N + + (5*G^4*H + 30*G^2*H^2 + 10*H^3) + (10*G^3 + 20*G*H)*u - (10*G^2 + 5*H)*v + 5*G*w + u^2 = 0
Second equation:
(H*L^4 + (G*K^4 + 12*G*K^2*L + 6*G*L^2 + 4*H*K^3 + 12*H*K*L + 4*K^3*L + 12*K*L^2)*w + (4*G*K + H + 6*K^2 + 4*L)*u*w - (G + 4*K)*v*w + w^2)*M + + (-L^5 - (K^5 + 20*K^3*L + 30*K*L^2)*w - (10*K^2 + 5*L)*u*w + 5*K*v*w - w^2)*N + + H^5 + (G^5 + 20*G^3*H + 30*G*H^2)*w + (10*G^2 + 5*H)*u*w - 5*G*v*w + w^2 = 0
Endform:
z^5 + M*z - N = 0
Other method with accurate examples
[edit]Verfahren der Teilschritte:
Grundlage:
x^5 - u*x^2 + v*x - w = 0
Gleichungssystem:
4*v*A - 3*u*B = 5*w
3*u^2*A^2 - 3*u*v*A + 25*w*A*B - 10*v*B^2 = 5*u*w - 2*v^2
Nachfolgende Gleichungen:
D = 4/5*v - 3/5*u*A
u*C^3 + (5*w*A - 4*v*B + 3*u^2)*C^2 + (u*v*A^2 + 6*u*w*A + 5*w*B^2 - 8*u*v*B + 3*u^3 + v*w)*C + + u^3*A^3 + v*w*A^3 - 2*u^2*B^3 + 2*u*v*A*B^2 - 2*u^2*A^2*D + 10*D^3 - 4*u^2*v*A^2 + v*w*A*B + 3*u*v*A*D + 2*u^2*w*A + 2*u^2*v*B - v^2*D + u^4 - 4*v^3 + 10*u*v*w = 0
Schlüssel für die Transformation:
y = x^4 + A*x^3 + B*x^2 + C*x + D
Verfahren der Teilschritte
[edit](x^4 + A*x^3 + B*x^2 + C*x + D)^5/(x^5 - u*x^2 + v*x - w) = x^15 + 5*A*x^14 + E*x^13 + F*x^12 + G*x^11 + H*x^10 + I*x^9 + J*x^8 + K*x^7 + L*x^6 + M*x^5 + N*x^4 + O*x^3 + P*x^2 + Q*x + R + (-S*(x^4 + A*x^3 + B*x^2 + C*x + D) + T)/(x^5 - u*x^2 + v*x - w)
Koeffizienten des Polynoms fünfzehnten Grades:
E = 10*A^2 + 5*B
F = 5*C + 10*A^3 + 20*A*B + u
G = 20*A*C + 5*A^4 + 30*A^2*B + 10*B^2 + 2*u*A + 3*v
H = (30*A^2 + 20*B)*C + A^5 + 20*A^3*B + 30*A*B^2 + 20*A*D + u*E - 5*v*A + w
I = 10*C^2 + (20*A^3 + 60*A*B)*C + 5*A^4*B + 30*A^2*B^2 + 30*A^2*D + 10*B^3 + 20*B*D + u*F - v*E + 5*w*A
J = 30*A*C^2 + (5*A^4 + 60*A^2*B + 30*B^2 + 20*D)*C + 10*A^3*B^2 + 20*A*B^3 + 20*A^3*D + 60*A*B*D + u*G - v*F + w*E
K = (30*A^2 + 30*B)*C^2 + (20*A^3*B + 60*A*B^2 + 60*A*D)*C + 10*A^2*B^3 + 5*B^4 + 5*A^4*D + 60*A^2*B*D + 30*B^2*D + 10*D^2 + u*H - v*G + w*F
L = 10*C^3 + (10*A^3 + 60*A*B)*C^2 + (30*A^2*B^2 + 60*A^2*D + 60*B*D + 20*B^3)*C + 5*A*B^4 + 20*A^3*B*D + 60*A*B^2*D + 30*A*D^2 + u*I - v*H + w*G
M = 20*A*C^3 + (30*A^2*B + 30*B^2 + 30*D)*C^2 + (20*A*B^3 + 20*A^3*D + 120*A*B*D)*C + B^5 + 30*A^2*D^2 + 30*A^2*B^2*D + 30*B*D^2 + 20*B^3*D + u*J - v*I + w*H
N = (10*A^2 + 20*B)*C^3 + (30*A*B^2 + 60*A*D)*C^2 + (60*A^2*B*D + 5*B^4 + 60*B^2*D + 30*D^2)*C + 10*A^3*D^2 + 60*A*B*D^2 + 20*A*B^3*D + u*K - v*J + w*I
O = 5*C^4 + 20*A*B*C^3 + (10*B^3 + 30*A^2*D + 60*B*D)*C^2 + (60*A*D^2 + 60*A*B^2*D)*C + 5*B^4*D + 30*A^2*B*D^2 + 30*B^2*D^2 + 10*D^3 + u*L - v*K + w*J
P = 5*A*C^4 + (10*B^2 + 20*D)*C^3 + 60*A*B*D*C^2 + (30*A^2*D^2 + 20*B^3*D + 60*B*D^2)*C + 20*A*D^3 + 30*A*B^2*D^2 + u*M - v*L + w*K
Q = 5*B*C^4 + 20*A*D*C^3 + (30*B^2*D + 30*D^2)*C^2 + 60*A*B*D^2*C + 10*A^2*D^3 + 10*B^3*D^2 + 20*B*D^3 + u*N - v*M + w*L
R = C^5 + 20*B*D*C^3 + 30*A*D^2*C^2 + (30*B^2*D^2 + 20*D^3)*C + 20*A*B*D^3 + u*O - v*N + w*M
S = -5*D*C^4 - 30*B*D^2*C^2 - 20*A*D^3*C - 5*D^4 - 10*B^2*D^3 - u*P + v*O - w*N
T = D^5 + D*S + w*R
y^5 + S*y = T
Erstes Rechenbeispiel
[edit]x^5 - 5*x^2 + 5*x - 5 = 0
u=5, v=5, w=5
Erster Lösungsweg vom ersten Rechenbeispiel
[edit]A=-1, B=-3, D=7
5*C^3 + 110*C^2 + 1100*C + 3080 = 0
C=-4*sqrt(3)*tanh(1/3*artanh(4/9*sqrt(3)))-2 = -4.268494999568071895959284940795497379614167933
E = -5
F = 5*C + 55 = 33.65752500215964052020357529602251310192916034
G = -20*C + 10 = 95.36989999136143791918569881590994759228335866
H = -30*C - 346 = -217.9451500129578431212214517761350786115749620
I = 10*C^2 + 185*C + 50 = -557.4710793067169597997475357093474157541519641
J = -30*C^2 + 110*C + 1320 = 303.864063207383068586318121499036489819034217
K = -60*C^2 - 925*C - 215 = 2640.154900920208458046017500208917479296290717
L = 10*C^3 + 220*C^2 - 135*C - 3205 = 601.93582399144787706493033675748638139908212
M = -20*C^3 + 190*C^2 + 2395*C - 453 = -5658.79229842233905302196993742276992758671759
N = -50*C^3 - 790*C^2 + 145*C + 4685 = -6439.16140617149471093190513669341071209135941
O = 5*C^4 + 110*C^3 - 70*C^2 - 2220*C + 6735 = 8040.5655109457491571159493206912429734422049
P = -5*C^4 + 80*C^3 + 810*C^2 - 3105*C - 7405 = 12725.2908526981776522296121660866288216580873
Q = -15*C^4 - 240*C^3 - 440*C^2 - 3105*C - 20715 = -1792.3722169251795378769955903014035538191141
R = C^5 + 25*C^4 + 280*C^3 + 3080*C^2 + 20240*C + 28565 = -16605.557480736173604702798226758969888697260
Koeffizienten der Bring Jerrard Endform:
S = 15*C^4 + 400*C^3 + 3960*C^2 + 10560*C + 4400 = 5346.765979941334291267356272672478351214203
S = -880*(C^2 + 16*C + 44)
T = 5*C^5 + 230*C^4 + 4200*C^3 + 43120*C^2 + 175120*C + 190432 = -28793.425544091527984642497225087500984986875
T = 704*(5*C^2 - 132)
x^5 - 5*x^2 + 5*x - 5 = 0 C = -2-4*sqrt(3)*tanh(1/3*artanh(4/9*sqrt(3))) y = x^4-x^3-3*x^2+C*x+7 y^5 - 880*(C^2 + 16*C + 44)*y = 704*(5*C^2 - 132)
Zweiter Lösungsweg vom ersten Rechenbeispiel
[edit]A=7/5, B=1/5, D=-1/5
5*C^3 + 106*C^2 + 620*C + 30488/25 = 0
C=-14/5-4/5*sqrt(15)*coth(1/3*arcoth(16/45*sqrt(15))) = -13.211735572933908537478732071425141899412474429210737
E = 103/5
F = 5*C + 951/25
G = 28*C + 7546/125
H = 314/5*C + 266982/3125
I = 10*C^2 + 2417/25*C + 72446/625
J = 42*C^2 + 19366/125*C + 126016/625
K = 324/5*C^2 + 24567/125*C + 192069/625
L = 10*C^3 + 2356/25*C^2 + 35749/125*C + 283163/625
M = 28*C^3 + 4174/25*C^2 + 73471/125*C + 2680691/3125
N = 118/5*C^3 + 3722/25*C^2 + 85933/125*C + 693573/625
O = 5*C^4 + 278/5*C^3 + 8578/25*C^2 + 153076/125*C + 1085823/625
P = 7*C^4 + 432/5*C^3 + 17106/25*C^2 + 62359/25*C + 2225123/625
Q = C^4 + 112/5*C^3 + 9544/25*C^2 + 241139/125*C + 2202873/625
R = C^5 + 25*C^4 + 1496/5*C^3 + 45192/25*C^2 + 703056/125*C + 4641913/625
Koeffizienten der Bring Jerrard Endform:
S = -9*C^4 - 272*C^3 - 61256/25*C^2 - 1223232/125*C - 9164368/625
S = 1936/125*(25*C^2 + 160*C + 332)
T = 5*C^5 + 634/5*C^4 + 7752/5*C^3 + 1191056/125*C^2 + 18799632/625*C + 125212192/3125
T = -23232/3125*(625*C^2 + 4800*C + 10668)
x^5 - 5*x^2 + 5*x - 5 = 0 C = -14/5-4/5*sqrt(15)*coth(1/3*arcoth(16/45*sqrt(15))) y = x^4+7/5*x^3+1/5*x^2+C*x-1/5 y^5 + 1936/125*(25*C^2 + 160*C + 332)*y = -23232/3125*(625*C^2 + 4800*C + 10668)
Quintic Principal Tschirnhaus Transformation Examples
[edit]Recipe for the Transformation Key
[edit]Given Principal Equation:
- x^5 - u*x^2 + v*x - w = 0
Equation system for the unknowns A and B of the key:
- 4*v*A - 3*u*B = 5*w
- 3*u^2*A^2 - 3*u*v*A + 25*w*A*B - 10*v*B^2 = 5*u*w - 2*v^2
Equations for the unknowns D and C of the key:
- D = 4/5*v - 3/5*u*A
- u*C^3 + (5*w*A - 4*v*B + 3*u^2)*C^2 + (u*v*A^2 + 6*u*w*A + 5*w*B^2 - 8*u*v*B + 3*u^3 + v*w)*C + + u^3*A^3 + v*w*A^3 - 2*u^2*B^3 + 2*u*v*A*B^2 - 2*u^2*A^2*D + 10*D^3 - 4*u^2*v*A^2 + v*w*A*B + 3*u*v*A*D + 2*u^2*w*A + 2*u^2*v*B - v^2*D + u^4 - 4*v^3 + 10*u*v*w = 0
Resulting Transformation Key:
- y = x^4 + A*x^3 + B*x^2 + C*x + D
Calculation Examples
[edit]x^5 - 5*x^2 + 5*x - 5 = 0 C = -2-4*sqrt(3)*tanh(1/3*artanh(4/9*sqrt(3))) y = x^4-x^3-3*x^2+C*x+7 y^5 - 880*(C^2+16*C+44)*y = 704*(5*C^2-132) y^5 - 880*(C^2+16*C+44)*y = 4/5*(C+11)*880*(C^2+16*C+44)
x^5 - 5*x^2 + 5*x - 5 = 0 C = -14/5-4/5*sqrt(15)*coth(1/3*arcoth(16/45*sqrt(15))) y = x^4+7/5*x^3+1/5*x^2+C*x-1/5 y^5 + 1936/125*(25*C^2+160*C+332)*y = -23232/3125*(625*C^2+4800*C+10668) y^5 + 1936/125*(25*C^2+160*C+332)*y = 12/125*(10*C+23)*1936/125*(25*C^2+160*C+332)
x^5 - 5*x^2 + 5*x - 8 = 0 C = -8/5-2/5*sqrt(546)*tanh(1/3*artanh(1/36*sqrt(546))) y = x^4-x^3-4*x^2+C*x+7 y^5 - 455*(5*C^2+107*C+304)*y = 24843*(C^2+7*C+5) y^5 - 455*(5*C^2+107*C+304)*y = 3/40*(9*C+160)*455*(5*C^2+107*C+304)
x^5 - 5*x^2 + 5*x - 8 = 0 C = -11/4-1/4*sqrt(273)*coth(1/3*arcoth(1/9*sqrt(273))) y = x^4+2*x^3+C*x-2 y^5 + 455*(4*C^2+22*C+53)*y = -16562*(4*C^2+30*C+75) y^5 + 455*(4*C^2+22*C+53)*y = 2/5*(4*C+11)*455*(4*C^2+22*C+53)
x^5 - 5*x^2 + 15*x - 12 = 0 C = -4-sqrt(10)*coth(1/3*arcoth(1/2*sqrt(10))) y = x^4+x^3+C*x+9 y^5 + 675*(3*C^2 + 29*C + 78)*y = -2025*(7*C^2 + 69*C + 189) y^5 + 675*(3*C^2 + 29*C + 78)*y = 3/10*(C-6)*675*(3*C^2 + 29*C + 78)
x^5 - 5*x^2 + 15*x - 12 = 0 C = 3-450^(1/3) y = x^4+2*x^3+4*x^2+C*x+6 y^5 - 10125*(2*C+9)*y = 12150*(2*C+9)*(2*C-21)
x^5 + x^2 + x - 1 = 0 C^3 + 1/433*(31*sqrt(8870)-2556)*C^2 - 1/187489*(31536*sqrt(8870)-125194)*C + 1/405913685*(44948782*sqrt(8870)-957483960) = 0 C = -1/1299*(31*sqrt(8870)-2556)+4/1299*sqrt(1774*(2069-9*sqrt(8870)))*cos(pi/6+1/6*arccos(324/34295*sqrt(8870)-15557/34295)) y = x^4 + 1/433*(401-3*sqrt(8870))*x^3 + 1/433*(187+4*sqrt(8870))*x^2 + C*x + 1/2165*(2935-9*sqrt(8870)) y^5 + (7096/187489*(2069-9*sqrt(8870))*C^2 - 113536/405913685*(704810+287*sqrt(8870))*C + 14192/175760625605*(1429371257-2976793*sqrt(8870)))*y = -14192/405913685*(212409*sqrt(8870)-18644740)*C^2 + 56768/175760625605*(34261965*sqrt(8870)-2500947946)*C - 28384/1902608772174125*(596854977381*sqrt(8870)-49163189125600)
x^5 + x^2 + 3*x - 7 = 0 C^3 + 1/33*(83*sqrt(895)-1123)*C^2 - 1/1089*(36602*sqrt(895)+946408)*C + 1/179685*(23002950+4579766*sqrt(895)) = 0 C = 1123/99 - (83 sqrt(895))/99 + 4/99 sqrt(19153 (134 - sqrt(895))) cos(pi/3-1/3*arccos(1/47 sqrt(214/235 (1799 - 22 sqrt(895))))) y = x^4 + 1/33*(68-sqrt(895))*x^3 + 1/33*(4*sqrt(895)+113)*x^2 + C*x + 1/55*(200-sqrt(895)) y^5 + (76612/363*(134-sqrt(895))*C^2 - 153224/179685*(453480+13247*sqrt(895))*C + 153224/658845*(1126974+8183*sqrt(895)))*y = -16394968/16335*(173*sqrt(895)-3580)*C^2 + 32789936/5929605*(175774*sqrt(895)+3338171)*C - 32789936/1630641375*(60817981*sqrt(895)-750958700)
x^5 + 3*x^2 + 2*x - 1 = 0 C^3 - 5/114*(387-109*sqrt(5))*C^2 + 50/1083*(1661-643*sqrt(5))*C - 25/20577*(174995-76979*sqrt(5)) = 0 C = 5/342*(387-109*sqrt(5)) + 5/171 sqrt(94 (953 - 405 sqrt(5)))*cos(1/3*arccos(1/61 sqrt(47/610 (52673 - 23085 sqrt(5))))) y = x^4-1/38*(45*sqrt(5)-89)*x^3+1/19*(20*sqrt(5)-29)*x^2+C*x+1/38*(221-81*sqrt(5)) y^5 + (1175/3249*(953-405*sqrt(5))*C^2 - 8225/123462*(53795-23363*sqrt(5))*C + 5875/2345778*(2295271-1003019*sqrt(5)))*y = 1380625/370386*(1821-811*sqrt(5))*C^2 - 276125/7037334*(1153697-514345*sqrt(5))*C + 55225/66854673*(215313100-96196009*sqrt(5))
Instructions
[edit]Principal Equation:
x^5 - u*x^2 + v*x - w = 0
y = x^4 + A*x^3 + B*x^2 + C*x + D
y^5 + S*y = T
First two Coefficients:
4*v*A - 3*u*B = 5*w
3*u^2*A^2 - 3*u*v*A + 25*w*A*B - 10*v*B^2 = 5*u*w - 2*v^2
Next two Coefficients:
D = 4/5*v - 3/5*u*A
u*C^3 + (5*w*A - 4*v*B + 3*u^2)*C^2 + (u*v*A^2 + 6*u*w*A + 5*w*B^2 - 8*u*v*B + 3*u^3 + v*w)*C + + u^3*A^3 + v*w*A^3 - 2*u^2*B^3 + 2*u*v*A*B^2 - 2*u^2*A^2*D + 10*D^3 - 4*u^2*v*A^2 + v*w*A*B + 3*u*v*A*D + 2*u^2*w*A + 2*u^2*v*B - v^2*D + u^4 - 4*v^3 + 10*u*v*w = 0
Schlüssel für die Transformation:
y = x^4 + A*x^3 + B*x^2 + C*x + D
Determination of the Bring Jerrard Endform:
Koeffizienten des Polynoms fünfzehnten Grades:
E = 10*A^2 + 5*B
F = 5*C + 10*A^3 + 20*A*B + u
G = 20*A*C + 5*A^4 + 30*A^2*B + 10*B^2 + 2*u*A + 3*v
H = (30*A^2 + 20*B)*C + A^5 + 20*A^3*B + 30*A*B^2 + 20*A*D + u*E - 5*v*A + w
I = 10*C^2 + (20*A^3 + 60*A*B)*C + 5*A^4*B + 30*A^2*B^2 + 30*A^2*D + 10*B^3 + 20*B*D + u*F - v*E + 5*w*A
J = 30*A*C^2 + (5*A^4 + 60*A^2*B + 30*B^2 + 20*D)*C + 10*A^3*B^2 + 20*A*B^3 + 20*A^3*D + 60*A*B*D + u*G - v*F + w*E
K = (30*A^2 + 30*B)*C^2 + (20*A^3*B + 60*A*B^2 + 60*A*D)*C + 10*A^2*B^3 + 5*B^4 + 5*A^4*D + 60*A^2*B*D + 30*B^2*D + 10*D^2 + u*H - v*G + w*F
L = 10*C^3 + (10*A^3 + 60*A*B)*C^2 + (30*A^2*B^2 + 60*A^2*D + 60*B*D + 20*B^3)*C + 5*A*B^4 + 20*A^3*B*D + 60*A*B^2*D + 30*A*D^2 + u*I - v*H + w*G
M = 20*A*C^3 + (30*A^2*B + 30*B^2 + 30*D)*C^2 + (20*A*B^3 + 20*A^3*D + 120*A*B*D)*C + B^5 + 30*A^2*D^2 + 30*A^2*B^2*D + 30*B*D^2 + 20*B^3*D + u*J - v*I + w*H
N = (10*A^2 + 20*B)*C^3 + (30*A*B^2 + 60*A*D)*C^2 + (60*A^2*B*D + 5*B^4 + 60*B^2*D + 30*D^2)*C + 10*A^3*D^2 + 60*A*B*D^2 + 20*A*B^3*D + u*K - v*J + w*I
O = 5*C^4 + 20*A*B*C^3 + (10*B^3 + 30*A^2*D + 60*B*D)*C^2 + (60*A*D^2 + 60*A*B^2*D)*C + 5*B^4*D + 30*A^2*B*D^2 + 30*B^2*D^2 + 10*D^3 + u*L - v*K + w*J
P = 5*A*C^4 + (10*B^2 + 20*D)*C^3 + 60*A*B*D*C^2 + (30*A^2*D^2 + 20*B^3*D + 60*B*D^2)*C + 20*A*D^3 + 30*A*B^2*D^2 + u*M - v*L + w*K
Q = 5*B*C^4 + 20*A*D*C^3 + (30*B^2*D + 30*D^2)*C^2 + 60*A*B*D^2*C + 10*A^2*D^3 + 10*B^3*D^2 + 20*B*D^3 + u*N - v*M + w*L
R = C^5 + 20*B*D*C^3 + 30*A*D^2*C^2 + (30*B^2*D^2 + 20*D^3)*C + 20*A*B*D^3 + u*O - v*N + w*M
S = -5*D*C^4 - 30*B*D^2*C^2 - 20*A*D^3*C - 5*D^4 - 10*B^2*D^3 - u*P + v*O - w*N
T = D^5 + D*S + w*R
Further concept of solving Principal Quintic Equations
[edit]Einfachste Rechenbeispiele
[edit]Erste Gleichung:
x^5 - 5*x^2 + 15*x - 7 = 0
(x^4+x^3+5/3*x^2-2/3*x+9)^5 - 338000/81*(x^4+x^3+5/3*x^2-2/3*x+9) - 8788000/243 = 0
Zweite Gleichung:
x^5 + 10*x^2 + 15*x - 4 = 0
(x^4-1/2*x^3+5/3*x^2+19/3*x+9)^5 - 10440125/1296*(x^4-1/2*x^3+5/3*x^2+19/3*x+9) - 177482125/3888 = 0
Erzeugungsalgorithmus
[edit]Prinzipielle Gleichung:
x^5 - u*x^2 + v*x - w = 0
Gleichungssystem mit zwei Unbekannten:
4*v*A - 3*u*B = 5*w 3*u^2*A^2 - 3*u*v*A + 25*w*A*B - 10*v*B^2 = 5*u*w - 2*v^2
Gleichungen für die weiteren Koeffizienten des Schlüssels:
D = 4/5*v - 3/5*u*A
u*C^3 + (5*w*A - 4*v*B + 3*u^2)*C^2 + (u*v*A^2 + 6*u*w*A + 5*w*B^2 - 8*u*v*B + 3*u^3 + v*w)*C + + u^3*A^3 + v*w*A^3 - 2*u^2*B^3 + 2*u*v*A*B^2 - 2*u^2*A^2*D + 10*D^3 - 4*u^2*v*A^2 + v*w*A*B + 3*u*v*A*D + 2*u^2*w*A + 2*u^2*v*B - v^2*D + u^4 - 4*v^3 + 10*u*v*w = 0
Schlüssel der Transformation:
y = x^4 + A*x^3 + B*x^2 + C*x + D
Koeffizienten der Polynomdivision:
H = (30*A^2 + 20*B)*C + A^5 + 20*A^3*B + 30*A*B^2 + 20*A*D + w - 5*v*A + 10*u*A^2 + 5*u*B
I = 10*C^2 + (20*A^3 + 60*A*B + 5*u)*C + 5*A^4*B - 8*u*A^3 + 30*A^2*B^2 + 18*v*A^2 + 11*v*B + 5*u*A*B + 10*B^3 + u^2
J = 30*A*C^2 + (5*A^4 + 60*A^2*B + 30*B^2 + 20*D + 20*u*A - 5*v)*C + 10*A^3*B^2 + 20*A*B^3 + 20*A^3*D + 40*A*B*D + 5*u*A^4 + 12*u*A^2*B + 7*u*B^2 + 2*u^2*A + 2*u*v - 2*v*A^3
K = (30*A^2 + 30*B)*C^2 + (20*A^3*B + 60*A*B^2 + 10*A*D + 35*u*B + 30*w)*C + 10*A^2*B^3 + 5*B^4 - 20*B^2*D + 20*D^2 - 2*u*A^5 - 22*u*A^3*B + u*w - u*v*A - 8*u^2*A^2 + 2*u^2*B + 7*v*A^4 + 18*v*A^2*B + 38*v*B^2 + 26*u*v*A - 11*v^2
L = 10*C^3 + (10*A^3 + 60*A*B + 10*u)*C^2 + (30*A^2*B^2 + 20*B^3 - 16*u*A^3 + 12*u*A*B + 5*u^2 + 34*v*A^2 + 28*v*B)*C + 5*A*B^4 + 10*A*B^2*D + 20*A*D^2 - 10*u*A^4*B - 8*u^2*A^3 + 11*u*v*B + 5*u^2*A*B + 4*u*B^3 + u^3 + 3*v*A^5 - 4*v*A^3*B + 30*v*A*B^2 + 2*v*w - 7*v^2*A + 14*u*v*A^2 - 5*u*v*B + 8*u*w*A
Nächste Stufe:
M = 20*A*C^3 + (30*A^2*B + 30*B^2 + 30*D)*C^2 + (20*A*B^3 + 20*A^3*D + 120*A*B*D)*C + B^5 + 30*A^2*D^2 + 30*A^2*B^2*D + 30*B*D^2 + 20*B^3*D + u*J - v*I + w*H
N = (10*A^2 + 20*B)*C^3 + (30*A*B^2 + 60*A*D)*C^2 + (60*A^2*B*D + 5*B^4 + 60*B^2*D + 30*D^2)*C + 10*A^3*D^2 + 60*A*B*D^2 + 20*A*B^3*D + u*K - v*J + w*I
O = 5*C^4 + 20*A*B*C^3 + (10*B^3 + 30*A^2*D + 60*B*D)*C^2 + (60*A*D^2 + 60*A*B^2*D)*C + 5*B^4*D + 30*A^2*B*D^2 + 30*B^2*D^2 + 10*D^3 + u*L - v*K + w*J
P = 5*A*C^4 + (10*B^2 + 20*D)*C^3 + 60*A*B*D*C^2 + (30*A^2*D^2 + 20*B^3*D + 60*B*D^2)*C + 20*A*D^3 + 30*A*B^2*D^2 + u*M - v*L + w*K
Koeffizienten der BJ Form:
S = -5*D*C^4 - 30*B*D^2*C^2 - 20*A*D^3*C - 5*D^4 - 10*B^2*D^3 - u*P + v*O - w*N T = D^5 + D*S + w*C^5 + 20*w*B*D*C^3 + 30*w*A*D^2*C^2 + (30*w*B^2*D^2 + 20*w*D^3)*C + 20*w*A*B*D^3 + u*w*O - v*w*N + w^2*M
Finale BJ Form der Transformation:
y^5 + S*y - T = 0
Akkurate Beispiele
[edit]Sehr bekanntes Beispiel:
Ausführung:
x^5 + x^2 + x - 1 = 0
A = 401/433-3/433*sqrt(8870) = 0.273574983207144356854525060669
B = 187/433+4/433*sqrt(8870) = 1.301900022390474190860633252441
D = 2935/2165-9/2165*sqrt(8870) = 0.964144989924286614112715036401
C^3 + 1/433*(31*sqrt(8870)-2556)*C^2 - 1/187489*(31536*sqrt(8870)-125194)*C + 1/405913685*(44948782*sqrt(8870)-957483960) = 0
C = -1/1299*(31*sqrt(8870)-2556)+4/1299*sqrt(1774*(2069-9*sqrt(8870)))*cos(pi/6+1/6*arccos(324/34295*sqrt(8870)-15557/34295))
Berechnung der Koeffizienten:
H = 1/187489*(8838350-37540*sqrt(8870))*C + 1/15220870177393*(167857361941334+172425173618*sqrt(8870)) = 101.3838713311896890345642481862075568
I = 10*C^2 + 1/81182737*(1987271195-6636840*sqrt(8870))*C + 1/15220870177393*(889150922913648-2821275699115*sqrt(8870)) = 193.594880704790500968678478763099
J = 30/433*(401-3*sqrt(8870))*C^2 + 6/35152125121*(103116842455 + 2981785018*sqrt(8870))*C + 1/15220870177393*(608960088566976-4527197721838*sqrt(8870)) = 300.679179457897858384379535017224255
K = 60/187489*(160801-337*sqrt(8870))*C^2 + 1/35152125121*(1266401442975-7688909632*sqrt(8870))*C + 1/15220870177393*(341190567194247+4761774728111*sqrt(8870)) = 512.210447538549162263478951574907969
L = 10*C^3 + 50/81182737*(204603*sqrt(8870)-476188)*C^2 + 1/35152125121*(4382859911345-13695188068*sqrt(8870))*C + 3/15220870177393*(98464670363197-603965777854 sqrt(8870)) = 715.96498158419426770083994400225145
Nächste Stufe:
M = 20/433*(401-3*sqrt(8870))*C^3 + 1/81182737*(1321142870+41560704*sqrt(8870))*C^2 - 235/35152125121*(43119716*sqrt(8870)-4008069195)*C + 1/15220870177393*(941959891405511-2326092019423*sqrt(8870)) = 861.23875702962665069670109129185022
N = 10/187489*(402573+1058*sqrt(8870))*C^3 - 2/81182737*(18398502*sqrt(8870)-1336093445)*C^2 + 1/35152125121*(1495117291041+14640472168*sqrt(8870))*C + 1/15220870177393*(94696065336331+413515071290*sqrt(8870)) = 1012.27201768955591189993678152152316
O = 5*C^4 - 10/187489*(250395-2086*sqrt(8870))*C^3 + 1/81182737*(5545805010-11583382*sqrt(8870))*C^2 + 1/35152125121*(1349332968154-12759216412*sqrt(8870))*C + 1/76104350886965*(1537655855716955+3645674595942*sqrt(8870)) = 991.00371045848718460319041741076179
P = 5/433*(401-3*sqrt(8870))*C^4 + 8/187489*(188095+3169*sqrt(8870))*C^3 - 210/81182737*(-3682617+97213*sqrt(8870))*C^2 + 1/35152125121*(551425315187+10956051652*sqrt(8870))*C + 1/76104350886965*(3661529518488315-27543847813482*sqrt(8870)) = 804.18937869134555228873399337361968
Geschliffene Koeffizienten der Endform:
S = 7096/187489*(2069-9*sqrt(8870))*C^2 - 113536/405913685*(704810+287*sqrt(8870))*C + 14192/175760625605*(1429371257-2976793*sqrt(8870))
T = -14192/405913685*(212409*sqrt(8870)-18644740)*C^2 + 56768/175760625605*(34261965*sqrt(8870)-2500947946)*C - 28384/1902608772174125*(596854977381*sqrt(8870)-49163189125600)
Formale Plottung:
x^5 + x^2 + x - 1 = 0 C^3 + 1/433*(31*sqrt(8870)-2556)*C^2 - 1/187489*(31536*sqrt(8870)-125194)*C + 1/405913685*(44948782*sqrt(8870)-957483960) = 0 C = -1/1299*(31*sqrt(8870)-2556)+4/1299*sqrt(1774*(2069-9*sqrt(8870)))*cos(pi/6+1/6*arccos(324/34295*sqrt(8870)-15557/34295)) y = x^4 + 1/433*(401-3*sqrt(8870))*x^3 + 1/433*(187+4*sqrt(8870))*x^2 + C*x + 1/2165*(2935-9*sqrt(8870)) y^5 + (7096/187489*(2069-9*sqrt(8870))*C^2 - 113536/405913685*(704810+287*sqrt(8870))*C + 14192/175760625605*(1429371257-2976793*sqrt(8870)))*y = -14192/405913685*(212409*sqrt(8870)-18644740)*C^2 + 56768/175760625605*(34261965*sqrt(8870)-2500947946)*C - 28384/1902608772174125*(596854977381*sqrt(8870)-49163189125600)
5*T/4/S = -(sqrt(8870)-82)/116*C - (196835+362*sqrt(8870))/125570
(5*T)^4/(4*S)^4*5/S =
= 1.19663220091271886926959406850172389677940858130431171845966625632465288719
Und aus den beiden anderen C_Lösungen:
= 8.65720164291023635432189644571896445631493417442280005262094668080634354873
= -0.00862520973605138819561746314908476390825838712155632909514232557414066630
1/S = (625(251909366410195+1924066033827sqrt(8870)))/161430602116240136192*((-514460 + 17856 sqrt(8870))/205675*C^2 + (31042913776 - 296153536 sqrt(8870))/445286375*C + (-105571339363640 + 247500682448 sqrt(8870))/964045001875)
Elliptischer Modul für diese Gleichung:
27571469241561972736 k^24 - 165428815449371836416 k^22 + 915305857698257235456 k^20 - 3060098480205377676800 k^18 - 692208622059345227885 k^16 + 19309708399526556771764 k^14 - 32642128148263000504974 k^12 + 19309708399526556771764 k^10 - 692208622059345227885 k^8 - 3060098480205377676800 k^6 + 915305857698257235456 k^4 - 165428815449371836416 k^2 + 27571469241561972736 = 0
k^24 - 6*k^22 + 29052602129/7876281216*k^20 - 291390542975/2625427072*k^18 - 33747920316865/1344218660864*k^16 + 235356249417409/336054665216*k^14 - 795716713584963/672109330432*k^12 + 235356249417409/336054665216*k^10 - 33747920316865/1344218660864*k^8 - 291390542975/2625427072*k^6 + 29052602129/7876281216*k^4 - 6*k^2 + 1 = 0
k^12+1-3*(k^10+k^2)-1/5250854144*(983008525*sqrt(8870)-63528962739)*(k^8+k^4)+1/5250854144*(1966017050*sqrt(8870)-100803654758)*k^6=0
k = sqrt(5/26912*sqrt(1/87*(39320341*sqrt(8870)-1280953515))*cos(1/3*arcsin(24 sqrt(3/145 (1280953515 + 39320341 sqrt(8870)))/318565)+pi/6) + 3/4) - sqrt(5/26912*sqrt(1/87*(39320341*sqrt(8870)-1280953515))*cos(1/3*arcsin(24 sqrt(3/145 (1280953515 + 39320341 sqrt(8870)))/318565)+pi/6) - 1/4)
k = sqrt(1/2-sqrt(3)/2*tan(1/6*arccos((135891098496*sqrt(8870)-10288155239785)/14715130587625)))
k = 0.54247018190725764574710293153684482480279268801231501035208038756875266423
s^3 + 25/336054665216*(39320341*sqrt(8870)-1280953515)*(-4*s+1)=0 for s=1/4+(1-k^2)^2/(4*k^2)
k^4*(-k^2+1)^2/(k^4-k^2+1)^3 = 256/14715130587625*(39320341*sqrt(8870)+1280953515)
k = tan(1/2*arccot(sqrt(sqrt(1/87 (-67467103347 + 983008525 sqrt(8870)))/53824*cot(1/6*arccos(324/34295*sqrt(8870)-15557/34295) + arctan(sqrt(174 (447 sqrt(8870) - 42019))/1131)+pi/6) + 1/8)))
k = tan(1/2*arccot(sqrt(sqrt(1/87 (-67467103347 + 983008525 sqrt(8870)))/53824*cot(arccot((-193366 - 5544 sqrt(8870) + 8227 sqrt(8870) C)/(3548 sqrt(37731 + 1467 sqrt(8870)))) + arctan(sqrt(174 (447 sqrt(8870) - 42019))/1131)) + 1/8)))
Complete elliptic solutions of principal quintic equations
[edit]Ermittlung des elliptischen Moduls
[edit]x^5 - u*x^2 + v*x - w = 0
Gleichungssystem für Transformation nach Adamchik und Jeffrey:
4*v*A - 3*u*B = 5*w
3*u^2*A^2 - 3*u*v*A + 25*w*A*B - 10*v*B^2 = 5*u*w - 2*v^2
Faktor der Linearkombination und zugleich Koeffizient der Brioschi Transformation:
P = ((27*u^4-160*v^3+300*u*v*w)*A-30*u^3*v+125*v^2*w)/(12*u^4-60*v^3+300*u*v*w)
Modulgleichung:
k^4*(-k^2+1)^2/(k^4-k^2+1)^3 = 256*u^2*(-4*v^2*P+20*u*w*P+5*v*w)/5/(15*w-16*u*P^2-12*v*P)^3
Erste durchgerechnete Gleichung
[edit]x^5 + 5*x^2 + 5*x - 6 = 0
27*k^4*(-k^2+1)^2/4/(k^4-k^2+1)^3 = (81/88)^2
k^6 - 1/54*(81+13*sqrt(21))*k^4 - 1/54*(81-13*sqrt(21))*k^2 + 1 = 0
k = sqrt(22/27*sin(1/3*arcsin(81/88))+3/4) - sqrt(22/27*sin(1/3*arcsin(81/88))-1/4)
k = cos(1/2*arcsin(sqrt(-729/239+351/239*sqrt(7)*tan(pi/3-1/3*arctan(622451/(255879 sqrt(7)))))))
k = sqrt(1/2+sqrt(3)/2*tan(1/3*arccos(81/88)))
k = 0.78524904412575068055871086982322788011467550335266512328053194380627812753
q = 0.05963619515075573277408024987905183643481517489470072405655924580865606967696
r = (2*theta(4,0,q^5)*theta(4,0,q^(1/5))-2*theta(4,0,q)^2)/(theta(4,0,q^(1/5))^2+5*theta(4,0,q^5)^2-4*theta(4,0,q)^2)
r = -0.7537978572717233955184462870828709259903045236185502763355728696109981879399296
z = r*(5*r^2-10*r+4)/(5*r^2-6*r+2)
z = -1.1575253093051875679824826927111080840076277720616441474343690050798733749551001822
x^4 + 2*x^2 + (3/2*sqrt(7)*cot(pi/6+1/3*arctan(sqrt(7)/9))+7/2)*x + 4 = (-5/4*sqrt(7)*cot(pi/6+1/3*arctan(1/9*sqrt(7)))-21/4)*z
x = 0.6910042313638778060039075030929807297194682102515707505178986679338019762
-72/91*(x^2-x+1)*(x+1)*(x-2) = z_1*z_2*z_3 = J
J = -72/91*x^4+144/91*x^3-72/91*x+144/91
J^2 = 88128/8281*x^4+186624/8281*x^3-57024/8281*x^2+767232/8281*x-311040/8281
J^3 = 234772992/753571*x^4-51881472/107653*x^3-36205056/57967*x^2+475891200/753571*x-95551488/753571
J^4 = -210637283328/68574961*x^4-126092132352/9796423*x^3+152804745216/68574961*x^2-823253704704/68574961*x+386983526400/68574961
Zweite durchgerechnete Gleichung
[edit]x^5 + 5*x^2 + 15*x - 6 = 0
27*k^4*(-k^2+1)^2/4/(k^4-k^2+1)^3 = (121*sqrt(77)/1176)^2
k = sqrt(126/121*sqrt(7/11)*sin(1/3*arcsin(121/168*sqrt(11/7))) + 3/4) - sqrt(126/121*sqrt(7/11)*sin(1/3*arcsin(121/168*sqrt(11/7))) - 1/4)
k = sqrt(1/2+sqrt(3)/2*tan(1/6*arccos(62267/98784)))
k = 0.79324374715564562455975157401671487681029101055142340366669515375968873721
q = 0.06169756600290766333368694743111437895094390597455230746707832430693247936189
r = (2*theta(4,0,q^5)*theta(4,0,q^(1/5))-2*theta(4,0,q)^2)/(theta(4,0,q^(1/5))^2+5*theta(4,0,q^5)^2-4*theta(4,0,q)^2)
r = -0.7379510313595900453447513829069863326367736667789303782693889087626802773440845
z = r*(5*r^2-10*r+4)/(5*r^2-6*r+2)
z = -1.1372912946877257755735674815125358327292192008579178352440233054521507354547503493
x^4 + 2*x^2 + (1/2*sqrt(143)*cot(pi/6+1/3*arctan(sqrt(13/11)))+7/2)*x + 12 = (-15/44*sqrt(143)*cot(1/6*pi+1/3*arctan(1/11*sqrt(143)))-39/4)*z
x = 0.35710487791136466208544001714283479964534181667612357460253736
-968/6201*(x^4-6*x^3-7*x-6) = z_1*z_2*z_3
Durchgerechnete Gleichung
[edit]x^5 + 10*x^2 + 15*x - 8 = 0
27*k^4*(-k^2+1)^2/4/(k^4-k^2+1)^3 = (3*sqrt(3)/14)^2
k^6 - 8 k^4 + 5 k^2 + 1 = 0
k = sqrt(9/8 - 13/24*sqrt(3)*tan(1/3*arctan(3/13*sqrt(3)))) - sqrt(1/8 - 13/24*sqrt(3)*tan(1/3*arctan(3/13*sqrt(3))))
k = sqrt(1/2+sqrt(3)/2*tan(1/6*arccos(-71/98)))
k = 0.92894384139046603714008382550030816096911667085237559011889968740168890560
q = 0.12176712871145015919097975166617402449922768147067164447123971571061305711146
r = (2*theta(4,0,q^5)*theta(4,0,q^(1/5))-2*theta(4,0,q)^2)/(theta(4,0,q^(1/5))^2+5*theta(4,0,q^5)^2-4*theta(4,0,q)^2)
r = -0.411594398344631625656328819791877387680121287087125351985841051334964768977295140
z = r*(5*r^2-10*r+4)/(5*r^2-6*r+2)
z = -0.693884590811116871540061610905190124132044403661222800482473272561073155056294093361
x^4 - 1/3*x^3 + 2*x^2 + (13/2+17/2/sqrt(3)*cot(1/3*arctan(1/3/sqrt(3))+pi/6))*x + 10 = (-17/2-17/sqrt(3)*cot(1/3*arctan(1/3/sqrt(3))+pi/6))*z
x = 0.416723308560700689327073547686522954734739750099217890859011012
-8/221 (x^4 - 6 x^3 + 2 x^2 - 2 x - 24) = z_1*z_2*z_3
Für die Bring Jerrard Form selbst
[edit]x^5 + 5*x - 4*f = 0
(4 k^12 - 12 k^10 - 512 k^8 f^8 - 414 k^8 f^4 - 512 k^8 f^6 sqrt(f^4 + 1) - 162 k^8 f^2 sqrt(f^4 + 1) - 3 k^8 + 1024 k^6 f^8 + 828 k^6 f^4 + 1024 k^6 f^6 sqrt(f^4 + 1) + 324 k^6 f^2 sqrt(f^4 + 1) + 26 k^6 - 512 k^4 f^8 - 414 k^4 f^4 - 512 k^4 f^6 sqrt(f^4 + 1) - 162 k^4 f^2 sqrt(f^4 + 1) - 3 k^4 - 12 k^2 + 4) = 0
((1-k^2)^2/(4*k^2)+1/4)^3 + (-4*((1-k^2)^2/(4*k^2)+1/4)+1)*1/256*(sqrt(f^4+1)+f^2)*(3*sqrt(f^4+1)+5*f^2)^3 = 0
k^2 = 1/2 + 1/2*f*sqrt(2*sqrt(f^4+1)-2*f^2)
k = (sqrt(sqrt(f^4+1)+1)+f)/sqrt(2*f^2+2+2*sqrt(f^4+1))
Elliptische Lösung einer Brioschi Gleichung
[edit]729 t^4 x^5 + 17280 t^2 x^3 + 184320 x - 262144 = 0
q = nome(1/2+1/2*sqrt(3)*tan(1/3*arctan(t)))
x = z_1*z_2*z_3
Von Bring Jerrard nach Brioschi
[edit]1 wird zu 13 - sqrt(97)
2 wird zu 208 - 8*sqrt(673)
1 wird zu 4/27*(11-sqrt(97))
2 wird zu 64/302589*(417-16*sqrt(673))
Complete calculation examples of Brioschi form
[edit]Principal core for the Brioschi pattern
[edit]5184*t^4*(t^2+1)*x^5 + (61440*F^3*t^2+69120*F^2*G*t^2-25920*F*G^2*t^4-3240*G^3*t^4)*x^2 + (184320*F^4-184320*F^3*g*t^2-51840*F^2*G^2*t^2-1215*G^4*t^4)*x -262144*F^5-184320*F^4*G-17280*F^2*G^3*t^2-729*G^5*t^4 = 0
729 t^4 B^5 + 17280 t^2 B^3 + 184320 B - 262144 = 0
x = (F*B+G)/(9/64*t^2*B^2+1)
Example:
x^5-u*x^2+v*x-w = 0
5/216*(512*F^3+576*F^2*G-216*F*G^2*t^2-27*G^3*t^2)/(t^2*(t^2+1)) = -u, 5/576*(4096*F^4-4096*F^3*G*t^2-1152*F^2*G^2*t^2-27*G^4*t^4)/(t^4*(t^2+1)) = v, (-262144*F^5-184320*F^4*G-17280*F^2*G^3*t^2-729*G^5*t^4)/(5184*t^4*(t^2+1))= -w
Example one
[edit]Elliptic nome:
Q = nome(1/2+1/2*sqrt(3)*tan(1/3*arctan(1/20184/sqrt(87)*sqrt(983008525*sqrt(8870)-67467103347))))
Q = 0.07586749185993868872658996634213628591559732724980749332173953859677738814
Jacobi Theta quotients:
y_{1} = (2*theta(3,0,Q^5)*theta(3,0,Q^(1/5))-2*theta(3,0,Q)^2)/(theta(3,0,Q^(1/5))^2+5*theta(3,0,Q^5)^2-4*theta(3,0,Q)^2)
y_{1} = 0.39463033878598007417484886271155487690287940131732677152451778251763441400428
y_{2} = (2*theta(4,0,Q^5)*theta(4,0,Q^(1/5))-2*theta(4,0,Q)^2)/(theta(4,0,Q^(1/5))^2+5*theta(4,0,Q^5)^2-4*theta(4,0,Q)^2)
y_{2} = -0.6390903532451355805215977950076780892310542613901676362469483683066183699121
y_{3} = (2*theta(2,0,Q^5)*theta(2,0,Q^(1/5))-2*theta(2,0,Q)^2)/(theta(2,0,Q^(1/5))^2+5*theta(2,0,Q^5)^2-4*theta(2,0,Q)^2)
y_{3} = -1.1026004408847745822765893660162869083332240051142820573778577815799612390581
Solutions of the Bring Jerrard Resolvent:
T_{1R} = 0.7994367254391991483858581310261327714211754323089756226626663424430879436263159
T_{2R} = -1.0087778570362330213391566905666618954518908612709341007600484641827379440753913
T_{3R} = -1.58361280915163376523140885984387480890846942018749698776651264254507340384697656
Product of the Bring Jerrard Resolvent solutions:
Z_{R} = 1.27711099005753252926231503966574481871544686744469187876734972998463623021
Solution of the Principal Quintic equation:
x = (1/1560896*(2110353-1312*sqrt(8870))*Z_{R} + 1/29*(sqrt(8870)-82))/(1/84013666304*(983008525*sqrt(8870)-67467103347)*Z_{R}^2+3)
x = 0.5865437103233227180461879736270421554470797452310849347869301980618
Example two
[edit]Elliptic nome:
Q = nome(1/2+1/2*sqrt(3)*tan(1/3*arctan(sqrt(185557765540073175 *sqrt(622236795)-4556700826849518431926)/360951512/sqrt(29279))))
Q = 0.04830558400896237192730619096116805228935135359425303334539975988569219173
Jacobi Theta quotients:
y_{1} = 0.39982134311061550048817431831122685600386943005807090839755001529096294586548
y_{2} = -0.8480863243019138050936751180424934566610595905874916711381911814764775596252
y_{3} = -0.9393180638947115679319567725363316979060609323559222632020003192660940109859
Real solutions of the three Bring Jerrard Resolvents:
T_{1R} = 0.7999993621330883287607480767264685282684500890716315768013908703737283357403387
T_{2R} = -1.2760950036508141853618403878223302600923340546682774211745703822520252585007827
T_{3R} = -1.3882003714166771939210418500566398739199163418066618438152930274091344656371572
Product of the real Bring Jerrard Resolvent solutions:
Z_{R} = 1.41717931645917773115949067690545239349065678829215427222394878103412663990
Solution of the Principal Quintic equation:
x = (-3/84546394558784*(1466081212*sqrt(622236795)-27266853044217)*Z_{R}+(7*sqrt(622236795)-92511)/29279)/(27/244137191601133261451264*(185557765540073175*sqrt(622236795)-4556700826849518431926)*Z_{R}^2+3)
x = 0.77462127682345336120780799796447925310324039684142983979896307723798453065
Example three
[edit]Elliptic nome:
Q = nome(1/2+1/2*sqrt(3)*tan(1/3*arctan(13/186484176*sqrt(30738)*sqrt(41711089375*sqrt(5)+52939239767))))
Q = 0.15435129542272773902811068212919926997007289214226569340193009875470755959
Jacobi Theta quotients:
y_{1} = 0.361842180501371976283486477314205029180537580697474920950159730243598479901635
y_{2} = -0.306185315146311041738146518100120099450463871346185623596978182334716008419395
y_{3} = -1.08383645070215927354848849064207614055343952801479285274890696276088020868291
Real solutions of the three Bring Jerrard Resolvents:
T_{1R} = 0.77533901720713560285116712892096048204208984402078427955408614043471928542659643
T_{2R} = -0.535493425335378498680194816489266870099811857519215224207503727325997735978190226
T_{3R} = -1.5614538338090613666791327749741763843471196958380377148894694299473263485534732
Product of the real Bring Jerrard Resolvent solutions:
Z_{R} = 0.64829837167486583929139212349332049204392781931453115078423219986621652109915905
Solution of the Principal Quintic equation:
x = (-611/165763712*(641285*sqrt(5)+672931)*Z_{R}+1/218*(705*sqrt(5)+19))/(7943/126044074385408*(41711089375*sqrt(5)+52939239767)*Z_{R}^2+3)
First Calculation example for the transformation
[edit]The Brioschi form[1] shall be created in a certain calculation example of the Principal form. This is a Principal Quintic equation for which the Abel Ruffini theorem is valid. This equation can not be solved by elementary root expressions but can be solved by elliptic expressions:
The value for a was already computed in the mentioned calculation example:
This solution brings those values:
This is the broken rational key:
It shows the Tschirnhaus Transformation in this way:
And this is the resulting Brioschi equation:
Second Calculation example for the transformation
[edit]Principal equation:
Brioschi equation:
Clues:
Solution:
Third Calculation example for the transformation
[edit]This is a next Principal Quintic equation that can not be solved by elementary expressions either. But again an elliptic solution way does indeed exist. The Brioschi algorithm is shown:
These are the coefficients of the broken rational quadratic key:
Corresponding Brioschi Quintic equation:
Real solution of the given Principal equation:
Fourth Calculation example for the transformation
[edit]Now this Principal Quintic equation is given:
The corresponding coefficients for the broken rational quadratic key are those:
Following expression represents the Brioschi Quintic for this calculation example:
The broken rational quadratic key gives the solution of the Principal Quintic equation:
Hyperbolic pattern of the solving
[edit]The Brioschi form with two real saddle points shall be solved in this section. Given is again the mentioned Brioschi Form:
Now a special substitution shall be made:
in the following by using the hyperbolic tangent function:
According to a further Tschirnhaus transformation into the Bring Jerrard form[2][3] and creating the elliptic modulus after the pattern of the Hermite essay Sur la résolution de l'Équation du cinquiéme degré Comptes rendus, the Legendre elliptic modulus k shall be generated[4][5] after this pattern:
In this way the Elliptic nome is generated after following formulas:
In the next step a fraction of Jacobi theta function expressions is created:
Because of the Poisson summation formula the same value f appears via replacing Q by Q* indeed. For all real values y following expression solves the mentioned Brioschi quintic equation:
One of the two real solutions of that quadratic equation is identical with the solution of the mentioned quintic equation in Brioschi form.
First calculation examples for solving a Brioschi equation
[edit]As an accurate calculation example we take following value:
That inserted value belongs to this Brioschi equation:
The corresponding modulus k has the mentioned form:
We get that value:
The nome is this value:
The Jacobi theta fraction is mentioned:
In that example it has following value:
By entering the values of f and y we get this solution:
Second calculation examples for solving a Brioschi equation
[edit]As an accurate calculation example we take following value:
That inserted value belongs to this Brioschi equation:
The corresponding modulus k has the mentioned form:
We get that value:
The nome is this value:
The Jacobi theta fraction is mentioned:
In that example it has following value:
By entering the values of f and y we get this solution:
Tschirnhaus transformations into the Brioschi form
[edit]Fundamental pattern of the transformation
[edit]In the following it is shown how some Principal Quintic equations are transformed into the Brioschi quintic forms. To fulfill this, only broken quadratic[6][7] Tschirnhaus transformations are relevant. This is the initial Principal Quintic equation:
Now the coefficients of the broken rational key of the Brioschi form will be created by at first computing the value u for the absolute term in the numerator:
This is the broken rational key for the Brioschi form:
The resulting Brioschi equation[8] looks this way:
Der magische Saft
[edit]x^5 - u*x^2 + v*x - w = 0
40*(-s^3*t-3*r*s^2+3*r^2*s*t+r^3)/(27*(t^2+1))=u
20*(3*s^4-8*r*s^3*t-6*r^2*s^2-r^4)/(27*(t^2+1))=v
16*(8*s^5*t+15*r*s^4+10*r^3*s^2+3*r^5)/(81*(t^2+1))=w
729*t^4*z^5+17280*t^2*z^3+184320*z-262144 = 0
x = (1/2*s*t*z+4/3*r)/(9/64*t^2*z^2+1)
Quintische Gleichungen und ihre korrespondierenden elliptischen Module
[edit]- k = sqrt(1/2+1/2*sqrt(3)*tan(-pi/6+1/2*arcsin(5364/465595*sqrt(8870)-9917/93119)+1/6*arcsin(324/34295*sqrt(8870)-15557/34295)))
- k = sqrt(1/2+1/2*sqrt(3)*tan(1/2*arcsin(6929126/7261745-1593723/7261745*sqrt(5))+1/6*arcsin((1084995*sqrt(5)-1340726)/1134905)))
- k = sqrt(1/2+1/2*sqrt(3)*tan(-1/2*arcsin(13510624/317372982505*sqrt(622236795)-24325799463/63474596501)-1/6*arcsin(1524096/31606815245*sqrt(622236795) - 19377815567/31606815245)+pi/6))
- ^ "How to transform the general quintic to the Brioschi quintic form?".
- ^ "How to solve the Brioschi quintic in terms of elliptic functions?".
- ^ "A new way to solve the Bring quintic?".
- ^ "The solution to the principal quintic via the Brioschi and Rogers-Ramanujan cfrac $R(q)$".
- ^ "The Brioschi quintic and the Rogers-Ramanujan continued fraction". 5 April 2012.
- ^ Garver, Raymond (1928). "On the Brioschi Normal Quintic". Annals of Mathematics. 30 (1/4): 607–612. doi:10.2307/1968308. JSTOR 1968308.
- ^ "Brioschi Quintic Form".
- ^ https://www.oocities.org/titus_piezas/Brioschi.pdf