2025 in paleontology
| |||
---|---|---|---|
Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2025.
2025 in science |
---|
Fields |
Technology |
Social sciences |
Paleontology |
Extraterrestrial environment |
Terrestrial environment |
Other/related |
Flora
[edit]Plants
[edit]Fungi
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Image |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Moore & Krings |
A fungal reproductive unit. The type species is V. dumosa. |
Cnidarians
[edit]Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Barroso et al. |
A sea anemone. The type species is A. ipuensis. |
||||||
Sp. nov |
Valid |
Krutykh, Mirantsev & Rozhnov |
A favositid coral. Published online in 2025, but the issue date is listed as December 2024. |
Arthropods
[edit]Brachiopods
[edit]Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Baranov, Kebrie-ee Zade & Blodgett |
A member of the family Athyrididae. The type species is N. damganensis. Published online in 2025, but the issue date is listed as December 2024. |
Molluscs
[edit]Echinoderms
[edit]Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Rozhnov |
Ordovician (Darriwilian and Sandbian) |
A crinoid belonging to group Camerata and to the family Colpodecrinidae. The type species is K. stellatus. Published online in 2025, but the issue date is listed as December 2024. |
Conodonts
[edit]Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et comb. nov |
Valid |
Tolmacheva, Dronov & Lykov |
Ordovician |
The type species is "Scolopodus" consimilis Moskalenko, (1973); genus also includes A. compositus (Moskalenko, 1973). Published online in 2025, but the issue date is listed as December 2024. |
Conodont research
[edit]- A study on the phylogenetic relationships, biogeography and biostratigraphy of members of the genus Gnathodus is published by Wang, Hu & Wang (2025).[8]
Fish
[edit]Amphibians
[edit]Amphibian research
[edit]- A study on the parasphenoids of Early Triassic trematosauroids and capitosaurs from the European part of Russia, providing evidence of differences of the levator scapulae muscles of the studied temnospondyls that were likely related to differences of their lifestyles, is published by Morkovin (2025).[9]
- A study on the structure of tissue of the dermal pectoral bones of Metoposaurus krasiejowensis is published by Kalita, Teschner & Konietzko-Meier (2025).[10]
- Jenkins et al. (2025) redescribe the skull of Hapsidopareion lepton, consider Llistrofus pricei to represent a junior synonym of this species, and reevaluate the affinities of recumbirostrans, recovering them as a clade of stem-amniotes.[11]
Reptiles
[edit]Synapsids
[edit]Non-mammalian synapsids
[edit]Synapsid research
[edit]- Medina et al. (2025) provide new information on the anatomy of the cranial endocast of Massetognathus pascuali, and describe the maxillary canal of the studied cynodont.[12]
- New information on the skull anatomy of Trucidocynodon riograndensis is provided by Kerber et al. (2025).[13]
- Dotto et al. (2025) describe fossil material of a prozostrodontian cynodont from the Upper Triassic strata from the Buriol site (Hyperodapedon Assemblage Zone, Brazil), providing new information on the morphological diversity of teeth of Carnian probainognathians.[14]
Mammals
[edit]Other animals
[edit]Other animal research
[edit]- Evidence from the study of Cambrian scalidophoran fossils, interpreted as indicating that the ventral nerve cord was ancestrally unpaired in scalidophorans, priapulids and possibly ecdysozoans in general, is presented by Wang et al. (2025).[15]
- A study on fossil material of the tommotiid Lapworthella fasciculata from the Cambrian strata in Australia is published by Bicknell et al. (2025), who report evidence of increase of thickness of sclerites of L. fasciculata and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.[16]
Foraminifera
[edit]Name | Novelty | Status | Authors | Age | Type locality | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Kaminski & Korin |
A member of Pseudogaudryininae. The type species is F. sirhanensis. |
Other organisms
[edit]Research on other organisms
[edit]- Saint Martin et al. (2025) identify body fossils of Palaeopascichnus in the Neoproterozoic Histria Formation (Romania), providing evidence of the Ediacaran age of the studied formation.[18]
History of life in general
[edit]- Maletz et al. (2025) revise Paleozoic fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.[19]
- Vinn et al. (2025) report new evidence of symbiotic associations between worms and tabulate corals from the Ordovician and Silurian strata in Estonia, including evidence of symbiotic relationships between tabulates and cornulitids spanning from the late Katian to the Ludfordian.[20]
- Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the Silurian (Rhuddanian) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.[21]
- A study on the assemblage of fossil teeth from the Middle Triassic (Anisian) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).[22]
Other research
[edit]- Evidence of a link between marine iodine cycle and stability of the ozone layer throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).[23]
- Evidence of slow accumulation of Australian sediments preserving Archean mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower primary productivity in Archean than in present times.[24]
- Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.[25]
- Rodiouchkina et al. (2025) report evidence interpreted as indicating that the amount of sulfur released by Chicxulub impact was approximately 5 times lower than inferred from previous estimates, resulting in milder impact winter scenario during the Cretaceous-Paleogene transition.[26]
Paleoclimate
[edit]- Evidence of low atmospheric CO2 levels throughout the main phase of the late Paleozoic icehouse, and of rapid increase in atmospheric CO2 between 296 and 291 million years ago, is presented by Jurikova et al. (2025).[27]
- Lu et al. (2025) report evidence from the study of palynological assemblages and clay mineralogy of the Kazuo Basin (Liaoning, China) indicative of a dry and hot climatic event during the early Aptian, interpreted as likely synchronous with the Selli Event.[28]
- Evidence indicating that abrupt climate changes during the Last Glacial Period increased pyrogenic methane emissions and global wildfire extent is presented by Riddell-Young et al. (2025).[29]
- Geochemical evidence from the study of a speleothem from the Herbstlabyrinth Cave (Germany), interpreted as indicating that the Laacher See eruption was not directly linked to the Younger Dryas cooling in Greenland and Europe, is presented by Warken et al. (2025).[30]
References
[edit]- ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
- ^ Moore, Z.; Krings, M. (2025). "Morphological diversity of fungal reproductive units in the Lower Devonian Rhynie cherts of Scotland: a new type with a two-layered hyphal mantle". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. doi:10.1127/njgpa/2025/1232.
- ^ Barroso, F. R. G.; Viana, M. S. S.; Agostinho, S.; Daly, M.; Fairchild, T. R.; Marques, A. C.; Pacheco, M. L. A. F. (2025). "Insights into the lifestyle and preservation of Arenactinia ipuensis n. gen. et n. sp. (Anthozoa, Actiniaria) from the Early Silurian (Ipu Formation, Parnaíba Basin, Brazil)". Earth History and Biodiversity. 100017. doi:10.1016/j.hisbio.2025.100017.
- ^ Krutykh, A. A.; Mirantsev, G. V.; Rozhnov, S. V. (2025). "Sutherlandia gzheliensis sp. nov.—a New Species of Favositid Coral from the Gzhelian Stage of the Moscow Syneclise". Paleontological Journal. 58 (11): 1208–1215. doi:10.1134/S0031030124601075.
- ^ Baranov, V. V.; Kebrie-ee Zade, M. R.; Blodgett, R. B. (2025). "New Late Devonian (Upper Famennian) Athyridids from the Khoshyeilagh Formation of Eastern Alborz Mountains, North-East Iran". Paleontological Journal. 58 (11): 1232–1241. doi:10.1134/S0031030124601105.
- ^ Rozhnov, S. V. (2025). "Kukrusecrinus stellatus gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position". Paleontological Journal. 58 (11): 1266–1280. doi:10.1134/S0031030124601129.
- ^ Tolmacheva, T. Yu.; Dronov, A. V.; Lykov, N. A. (2025). "Multielement Conodonts from the Upper Ordovician of the Siberian Platform". Paleontological Journal. 58 (11): 1242–1265. doi:10.1134/S0031030124601117.
- ^ Wang, W.; Hu, K.; Wang, X. (2025). "Temporal and spatial evolution of Mississippian conodont: A case study". Palaeogeography, Palaeoclimatology, Palaeoecology. 112701. doi:10.1016/j.palaeo.2024.112701.
- ^ Morkovin, B. I. (2025). "Structural Features of the Muscular Crests of the Parasphenoid in Early Triassic Capitosauromorphs (Amphibia: Capitosauromorpha) of the East European Platform as a Reflection of Adaptive Differences". Paleontological Journal. 58 (11): 1291–1300. doi:10.1134/S0031030124601130.
- ^ Kalita, S.; Teschner, E. M.; Konietzko-Meier, D. (2025). "Illuminating the dark mess of fibers: Application of circular cross polarized light in unravelling the bone tissue structure of the dermal pectoral girdle of Metoposaurus krasiejowensis". Journal of Anatomy. doi:10.1111/joa.14197. PMID 39823289.
- ^ Jenkins, X. A.; Sues, H.-D.; Webb, S.; Schepis, Z.; Peecook, B. R.; Mann, A. (2025). "The recumbirostran Hapsidopareion lepton from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem". Papers in Palaeontology. 11 (1). e1610. doi:10.1002/spp2.1610.
- ^ Medina, T. G. M.; Martinelli, A. G.; Gaetano, L. C.; Roese-Miron, L.; Tartaglione, A.; Backs, A.; Novas, F. E.; Kerber, L. (2025). "Revisiting the neuroanatomy of Massetognathus pascuali (Eucynodontia: Cynognathia) from the early Late Triassic of South America using Neutron Tomography". The Science of Nature. 112 (1). 7. doi:10.1007/s00114-024-01955-z. PMID 39821074.
- ^ Kerber, L.; Müller, R. T.; Simão-Oliveira, D.; Pretto, F. A.; Martinelli, A. G.; Michelotti, I. M.; Benoit, J.; Fonseca, P. H.; David, R.; Fernandez, V.; Angielczyk, K. D.; Araújo, R. (2025). "Synchrotron X-ray micro-computed tomography enhances our knowledge of the skull anatomy of a Late Triassic ecteniniid cynodont with hypercanines". The Anatomical Record. doi:10.1002/ar.25616. PMID 39801379.
- ^ Dotto, P. H.; Roese-Miron, L.; Cabreira, S. F.; Roberto-da-Silva, L.; Pretto, F. A.; Kerber, L. (2025). "Mandibular anatomy of a new specimen of a prozostrodontian cynodont (Eucynodontia: Probainognathia) from the Upper Triassic of Brazil". The Science of Nature. 112 (1). 6. doi:10.1007/s00114-024-01953-1. PMID 39808199.
- ^ Wang, D.; Vannier, J.; Martín-Durán, J. M.; Herranz, M.; Yu, C. (2025). "Preservation and early evolution of scalidophoran ventral nerve cord". Science Advances. 11 (2). eadr0896. doi:10.1126/sciadv.adr0896. PMC 11721716. PMID 39792685.
- ^ Bicknell, R. D. C.; Campione, N. E.; Brock, G. A.; Paterson, J. R. (2025). "Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals". Current Biology. doi:10.1016/j.cub.2024.12.007. PMID 39755119.
- ^ Kaminski, M. A.; Korin, A. (2025). "Flabellogaudryina n.gen, a new agglutinated foraminiferal genus from the Eocene of Saudi Arabia". Micropaleontology. 71 (1): 93–100. doi:10.47894/mpal.71.1.04.
- ^ Saint Martin, J.-P.; Charbonnier, S.; Saint Martin, S.; Cazes, L.; André, J.-P. (2025). "New records of Palaeopaschichnus Palij, 1976 from the Ediacaran of Romania". Geodiversitas. 47 (1): 1–16. doi:10.5252/geodiversitas2025v47a1.
- ^ Maletz, J.; Zhu, X.-J.; Zhang, Y.-D.; Gutiérrez-Marco, J. C. (2025). "The identification of 'feather-like' fossils in the Palaeozoic: Algae, hydroids, or graptolites?". Palaeoworld. doi:10.1016/j.palwor.2025.200909.
- ^ Vinn, O.; Almansour, M. I.; Al Farraj, S.; El Hedeny, M. (2025). "Symbiotic endobionts in tabulate corals from the Late Ordovician and Silurian of Estonia". GFF. doi:10.1080/11035897.2024.2391283.
- ^ Zong, R.; Liu, Y.; Liu, Q.; Ma, J.; Liu, S. (2025). "A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction". Geology. doi:10.1130/G53042.1.
- ^ Riccetto, M.; Mujal, E.; Bolet, A.; De Jaime-Soguero, C.; De Esteban-Trivigno, S.; Fortuny, J. (2025). "Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 39–62. doi:10.54103/2039-4942/22340.
- ^ Liu, J.; Hardisty, D. S.; Kasting, J. F.; Fakhraee, M.; Planavsky, N. J. (2025). "Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2412898121. doi:10.1073/pnas.2412898121. PMID 39761407.
- ^ Lotem, N.; Rasmussen, B.; Zi, J.-W.; Zeichner, S. S.; Present, T. M.; Bar-On, Y. M.; Fischer, W. W. (2025). "Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2417673121. doi:10.1073/pnas.2417673121. PMID 39761395.
- ^ Cowen, M. B.; de Rafélis, M.; Ségalen, L.; Kear, B. P.; Dumont, M.; Žigaitė, Ž. (2025). "Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains". PeerJ. 13. e18763. doi:10.7717/peerj.18763. PMC 11700492. PMID 39763693.
- ^ Rodiouchkina, K.; Goderis, S.; Senel, C. B.; Kaskes, P.; Karatekin, Ö.; Böttcher, M. E.; Rodushkin, I.; Vellekoop, J.; Claeys, P.; Vanhaecke, F. (2025). "Reduced contribution of sulfur to the mass extinction associated with the Chicxulub impact event". Nature Communications. 16 (1). 620. doi:10.1038/s41467-024-55145-6. PMID 39819896.
- ^ Jurikova, H.; Garbelli, C.; Whiteford, R.; Reeves, T.; Laker, G. M.; Liebetrau, V.; Gutjahr, M.; Eisenhauer, A.; Savickaite, K.; Leng, M. J.; Iurino, D. A.; Viaretti, M.; Tomašových, A.; Zhang, Y.; Wang, W.; Shi, G. R.; Shen, S.; Rae, J. W. B.; Angiolini, L. (2025). "Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age". Nature Geoscience: 1–7. doi:10.1038/s41561-024-01610-2.
- ^ Lu, C.; Lin, M.-Q.; Shen, J.; Ji, X.-K.; Yang, C.-M.; Zhang, Z.-H.; He, Q.; Sun, M.-D.; Xu, Y.-G. (2025). "A continental record of Early Cretaceous (Aptian) vegetation and climate change based on palynology and clay mineralogy from the North China Craton". Palaeogeography, Palaeoclimatology, Palaeoecology. 112750. doi:10.1016/j.palaeo.2025.112750.
- ^ Riddell-Young, B.; Lee, J. E.; Brook, E. J.; Schmitt, J.; Fischer, H.; Bauska, T. K.; Menking, J. A.; Iseli, R.; Clark, J. R. (2025). "Abrupt changes in biomass burning during the last glacial period". Nature. 637 (8044): 91–96. doi:10.1038/s41586-024-08363-3. PMID 39743610.
- ^ Warken, S. F.; Schmitt, A. K.; Scholz, D.; Hertwig, A.; Weber, M.; Mertz-Kraus, R.; Reinig, F.; Esper, J.; Sigl, M. (2025). "Discovery of Laacher See eruption in speleothem record synchronizes Greenland and central European Late Glacial climate change". Science Advances. 11 (3). eadt4057. doi:10.1126/sciadv.adt4057. PMC 11734736. PMID 39813351.