Jump to content

WASP-26

From Wikipedia, the free encyclopedia
WASP-26
Observation data
Epoch J2000      Equinox J2000
Constellation Cetus[1]
Right ascension 00h 18m 24.7008s[2]
Declination −15° 16′ 02.276″[2]
Apparent magnitude (V) 11.30[3]
Characteristics
Evolutionary stage subgiant[4][2]
Spectral type G0V[citation needed]
B−V color index 0.32
J−H color index 0.246
J−K color index 0.411
Astrometry
Radial velocity (Rv)9.07±0.41[2] km/s
Proper motion (μ) RA: +27.416[2] mas/yr
Dec.: −24.524[2] mas/yr
Parallax (π)3.9574±0.0247 mas[2]
Distance824 ± 5 ly
(253 ± 2 pc)
Details[5][6][7][8]
Mass1.09±0.01 M
Radius1.284±0.035 R
Luminosity1.26 L
Surface gravity (log g)4.40±0.01 cgs
Temperature6015±55 K
Metallicity [Fe/H]-0.02±0.09 dex
Rotational velocity (v sin i)3.9±0.4 km/s
Age6±Gyr
Other designations
WASP-26, TYC 5839-876-1, DENIS J001824.6-151601, 2MASS J00182469-1516022, Gaia DR2 2416782701664155008[9]
Database references
SIMBADdata

WASP-26 is a yellow main sequence star in the constellation of Cetus.

Star characteristics

[edit]

WASP-26 is an old star close to leaving the main sequence and is part of a wide binary. The binary's projected separation is 3800 astronomical units, its companion star being a red dwarf with an effective temperature of 4600K and a visual magnitude of 13.6.[5] WASP-26 produces a large amount of ultraviolet light due to frequent flares, with an average ultraviolet flux close to the F7 class main-sequence star WASP-1.[10]

Planetary system

[edit]

The "Hot Jupiter" class planet WASP-26b was discovered around WASP-26 in 2010.[5] The planet would have an equilibrium temperature of 1660±40 K, but measured temperatures are slightly higher at 1775K and no noticeable difference exists between the day-side and the night-side of the planet.[11] A 2011 study using the Rossiter-McLaughlin effect failed to determine the inclination of the planetary orbit to the equatorial plane of the parent star due to high stellar noise,[7] but an initial constraint of -34+36
−26
° was published in 2012.[12]

The WASP-26 planetary system[5][8]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 1.02±0.03 MJ 0.0400±0.0003 2.75660±0.00001 0 82.5±0.5° 1.216±0.047 RJ

References

[edit]
  1. ^ Roman, Nancy G. (1987). "Identification of a constellation from a position". Publications of the Astronomical Society of the Pacific. 99 (617): 695. Bibcode:1987PASP...99..695R. doi:10.1086/132034. Constellation record for this object at VizieR.
  2. ^ a b c d e f g Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ Høg, E.; et al. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27 – L30. Bibcode:2000A&A...355L..27H.
  4. ^ Irwin, Stacy Ann (2015). Analysis of Angular Momentum in Planetary Systems and Host Stars (Thesis). Bibcode:2015PhDT.........5I.
  5. ^ a b c d Smalley, B.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Lister, T. A.; Maxted, P. F. L.; Queloz, D.; Triaud, A. H. M. J.; West, R. G.; Bentley, S. J.; Enoch, B.; Pepe, F.; Pollacco, D. L.; Segransan, D.; Smith, A. M. S.; Southworth, J.; Udry, S.; Wheatley, P. J.; Wood, P. L.; Bento, J. (2010). "WASP-26b: A 1-Jupiter-mass planet around an early-G-type star". Astronomy and Astrophysics. 520: A56. arXiv:1004.1542. Bibcode:2010A&A...520A..56S. doi:10.1051/0004-6361/201014705. S2CID 55114421.
  6. ^ Bonfanti, A.; Ortolani, S.; Nascimbeni, V. (2016). "Age consistency between exoplanet hosts and field stars". Astronomy and Astrophysics. 585: A5. arXiv:1511.01744. Bibcode:2016A&A...585A...5B. doi:10.1051/0004-6361/201527297.
  7. ^ a b Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Queloz, D.; Smalley, B.; Triaud, A. H. M. J.; Vanhuysse, M. (2011). "Spin-orbit measurements and refined parameters for the exoplanet systems WASP-22 and WASP-26". Astronomy & Astrophysics. 534: A16. arXiv:1106.6092. Bibcode:2011A&A...534A..16A. doi:10.1051/0004-6361/201117597. S2CID 31204371.
  8. ^ a b Southworth, John; Hinse, T. C.; Burgdorf, M.; Calchi Novati, S.; Dominik, M.; Galianni, P.; Gerner, T.; Giannini, E.; Gu, S.-H.; Hundertmark, M.; Jørgensen, U. G.; Juncher, D.; Kerins, E.; Mancini, L.; Rabus, M.; Ricci, D.; Schäfer, S.; Skottfelt, J.; Tregloan-Reed, J.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Browne, P.; Ciceri, S.; d'Ago, G.; Damerdji, Y.; et al. (2014). "High-precision photometry by telescope defocussing – VI. WASP-24, WASP-25 and WASP-26★". Monthly Notices of the Royal Astronomical Society. 444 (1): 776–789. arXiv:1407.6253. Bibcode:2014MNRAS.444..776S. doi:10.1093/mnras/stu1492. S2CID 53641330.
  9. ^ "WASP-26". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2022-02-19.
  10. ^ Shkolnik, Evgenya L. (2013). "An Ultraviolet Investigation of Activity on Exoplanet Host Stars". The Astrophysical Journal. 766 (1): 9. arXiv:1301.6192. Bibcode:2013ApJ...766....9S. doi:10.1088/0004-637X/766/1/9.
  11. ^ Mahtani, D. P.; Maxted, P. F. L.; Anderson, D. R.; Smith, A. M. S.; Smalley, B.; Tregloan-Reed, J.; Southworth, J.; Madhusudhan, N.; Collier Cameron, A.; Gillon, M.; Harrington, J.; Hellier, C.; Pollacco, D.; Queloz, D.; Triaud, A. H. M. J.; West, R. G. (2013). "Warm Spitzer occultation photometry of WASP-26b at 3.6 and 4.5 μm". Monthly Notices of the Royal Astronomical Society. 432 (1): 693–701. arXiv:1303.4596. Bibcode:2013MNRAS.432..693M. doi:10.1093/mnras/stt505. S2CID 55842630.
  12. ^ Albrecht, Simon; Winn, Joshua N.; Johnson, John A.; Howard, Andrew W.; Marcy, Geoffrey W.; Butler, R. Paul; Arriagada, Pamela; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Hirano, Teruyuki; Bakos, Gaspar; Hartman, Joel D. (2012), "Obliquities of Hot Jupiter host stars: Evidence for tidal interactions and primordial misalignments", The Astrophysical Journal, 757 (1): 18, arXiv:1206.6105, Bibcode:2012ApJ...757...18A, doi:10.1088/0004-637X/757/1/18, S2CID 17174530